-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdist_img_cs.py
483 lines (420 loc) · 19.3 KB
/
dist_img_cs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import argparse
import os
import random
import shutil
import time
import datetime
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import logging
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from imagenet.networks.resnetcs18 import ResNet18
from imagenet.networks.resnetcs50 import ResNet50
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data',
metavar='DIR',
default='/home/zhen/imagenet12',
help='path to dataset')
parser.add_argument('-a',
'--arch',
metavar='ARCH',
default='ResNet18',
help='default: ResNet18')
parser.add_argument('-j',
'--workers',
default=8,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs',
default=300,
type=int,
metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b',
'--batch-size',
default=1024,
type=int,
metavar='N',
help='mini-batch size (default: 3200), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr',
'--learning-rate',
default=0.05,
type=float,
metavar='LR',
help='initial learning rate',
dest='lr')
parser.add_argument('--momentum',
default=0.9,
type=float,
metavar='M',
help='momentum')
parser.add_argument('--local_rank',
default=-1,
type=int,
help='node rank for distributed training')
parser.add_argument('--wd',
'--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p',
'--print-freq',
default=100,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('-e',
'--evaluate',
dest='evaluate',
action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained',
dest='pretrained',
action='store_true',
help='use pre-trained model')
parser.add_argument('--seed',
default=3407,
type=int,
help='seed for initializing training. ')
parser.add_argument('--classes', type=int, default=200, help='class of output')
parser.add_argument('--mask-initial-value', type=float, default=0., help='initial value for mask parameters')
parser.add_argument('--lmbda', type=float, default=0.001, help='lambda for L1 mask regularization (default: 1e-8)')
parser.add_argument('--final-temp', type=float, default=200, help='temperature at the end of each round (default: 200)')
parser.add_argument('--act', type=int, default=0, help='quantization bitwidth for activation')
parser.add_argument('--target', type=int, default=3, help='Target Nbit')
parser.add_argument('--Nbits', type=int, default=8, help='quantization bitwidth for weight')
parser.add_argument('--t0', type=int, default=1, help='number of cycle for learning rate, (T-0 for CosineAnnealingWarmRestarts)')
parser.add_argument('--rounds', type=int, default=3, help='number of rounds to train (default: 3)')
parser.add_argument('--rewind', type=int, default=2, help='The epoch to rewind weight')
parser.add_argument('--warmup',dest='warmup',action='store_true',help='warmup learning rate for the first 5 epochs')
parser.add_argument('--save_file', type=str, default='TIM_CSQvgg19bn_T6N3A0_lr005', help='path for saving trained models')
parser.add_argument('--log_file', type=str, default='train.log', help='save path of weight and log files')
def reduce_mean(tensor, nprocs):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= nprocs
return rt
def main():
args = parser.parse_args()
args.nprocs = torch.cuda.device_count()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args.local_rank, args.nprocs, args)
def main_worker(local_rank, nprocs, args):
today=datetime.date.today()
formatted_today=today.strftime('%m%d')
root = os.path.join('train_result',formatted_today)
save_dir =os.path.join(root,args.save_file)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
writer = SummaryWriter(save_dir)
train_log_filepath = os.path.join(save_dir, args.log_file)
logger = get_logger(train_log_filepath)
logger.info("args = %s", args)
dist.init_process_group(backend='nccl')
model = eval(args.arch)(
num_classes=args.classes,
Nbits=args.Nbits,
act_bit = args.act,
bin=True,
mask_initial_value = args.mask_initial_value
)
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / nprocs)
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[local_rank],
find_unused_parameters=True,
)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(local_rank)
optimizer = torch.optim.SGD(model.parameters(),args.lr,momentum=args.momentum,weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=int(args.epochs/args.t0), T_mult=1, eta_min=0, last_epoch=-1, verbose=False)
cudnn.benchmark = True
if args.classes == 1000:
train_sampler, val_sampler, train_loader, val_loader = imagenet_loader(args)
elif args.classes == 200:
train_sampler, val_sampler, train_loader, val_loader = tiny_loader(args)
def train(outer_round,train_loader, model, criterion, optimizer, local_rank, args, logger,writer):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader),
[batch_time, data_time, losses, top1, top5],
)
# switch to train mode
model.train()
end = time.time()
for epoch in range(args.start_epoch, args.epochs):
print('\t--------- Epoch {} -----------'.format(epoch))
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
if outer_round == 0 and epoch == args.rewind: model.module.checkpoint()
if args.warmup:
if epoch <= 5:
step = epoch/5
lr = args.lr * step
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
scheduler.step()
else:
if epoch > args.start_epoch:
scheduler.step()
# update global temp
model.temp = temp_increase**epoch
logger.info('Current global temp:%.3f'% round(model.temp,3))
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True)
# compute output
output = model(images)
ratio_one = get_ratio_one(model)
# Budget-aware adjusting lmbda according to Eq(4)
TS = args.target / args.Nbits # target ratio of ones of masks in the network
regularization_loss = 0
for m in model.module.mask_modules:
regularization_loss += torch.sum(torch.abs(m.mask).sum())
classify_loss = criterion(output, target)
loss = classify_loss + (args.lmbda*(ratio_one-TS)) * regularization_loss
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs)
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
# with torch.autograd.detect_anomaly():
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
lrr = optimizer.state_dict()['param_groups'][0]['lr']
if i % args.print_freq == 0:
progress.display(i)
val_acc = validate(val_loader, model, criterion, local_rank, args, logger,writer)
ratio_one = get_ratio_one(model)
logger.info('Current R_O:%.3f'% round(ratio_one,3))
writer.add_scalar('Ratio_of_Ones_in_mask', ratio_one, epoch)
def validate(val_loader, model, criterion, local_rank, args,logger,writer):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs)
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1,
top5=top5))
model.ticket = False
temp_increase = 200**(1./(args.epochs-1))
for outer_round in range(args.rounds):
print('--------- Round {} -----------'.format(outer_round))
# train epoch
train(outer_round,train_loader, model, criterion, optimizer, local_rank, args, logger,writer)
model.temp = 1
if outer_round != args.rounds-1: model.prune()
print('--------- Training final ticket -----------')
optimizer = torch.optim.SGD(model.module.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=int(args.epochs/args.t0), T_mult=1, eta_min=0, last_epoch=- 1, verbose=False)
model.module.ticket = True
model.module.rewind_weights()
train(outer_round,train_loader,model,criterion,optimizer,local_rank,args,logger,writer)
for m in model.module.mask_modules:
logger.info(m.mask)
ratio_one = get_ratio_one(model)
avg_bit = args.Nbits * ratio_one
logger.info('average bit is: %.3f ' % avg_bit)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_ratio_one(model):
mask = [m.mask for m in model.module.mask_modules]
total_ele = 0
ones = 0
for iter in range(len(mask)):
t = mask[iter].numel()
o = (mask[iter] >= 0.5).sum().item()
# z = (mask_discrete[iter] == 0).sum().item()
total_ele += t
ones += o
ratio_one = ones/total_ele
return ratio_one
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter(
"[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s"
)
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
def tiny_loader(args):
# data_dir = '/home/xiaolirui/datasets/tiny-imagenet-200'
normalize = transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821))
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), normalize, ])
trainset = datasets.ImageFolder(root=os.path.join(args.data, 'train'), transform=transform_train)
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
valset = datasets.ImageFolder(root=os.path.join(args.data, 'val'), transform=transform_test)
val_sampler = torch.utils.data.distributed.DistributedSampler(valset)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)
val_loader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)
return train_sampler, val_sampler, train_loader, val_loader
def imagenet_loader(args):
# Data loading code
traindir = os.path.join(args.data,'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler)
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=4,
pin_memory=True,
sampler=val_sampler)
return train_sampler, val_sampler, train_loader, val_loader
if __name__ == '__main__':
main()