-
Notifications
You must be signed in to change notification settings - Fork 12
/
caviar_render.py
114 lines (95 loc) · 4.21 KB
/
caviar_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'''
UFPA - LASSE - Telecommunications, Automation and Electronics Research and Development Center - www.lasse.ufpa.br
CAVIAR - Communication Networks and Artificial Intelligence Immersed in Virtual or Augmented Reality
Ailton Oliveira, Felipe Bastos, João Borges, Emerson Oliveira, Daniel Suzuki, Lucas Matni, Rebecca Aben-Athar, Aldebaro Klautau (UFPA): [email protected]
CAVIAR: https://github.com/lasseufpa/ITU-Challenge-ML5G-PHY-RL.git
Script to render UE4 simulations after beam selection
V0.1
'''
import caviar_config
import caviar_tools
import airsim
import math
import csv
import time
import os
import cv2
import tqdm
import random
import numpy as np
simulation_torender_path = './episodes/ep0.csv'
rl_out_path = './data/data_output_test9.a2c.csv'
best_beam_out_path = './data/data_best_Beams_test9.a2c.csv'
# Create a folder to write the output videos
try:
os.mkdir('./render_out')
except OSError as error:
print(error)
client = caviar_tools.airsim_connect()
# Create the output video
# The video resolution can be defined at airsim settings file
rawimg = caviar_tools.airsim_getimages(client, caviar_config.drone_ids[0])
img = cv2.imdecode(airsim.string_to_uint8_array(rawimg), cv2.IMREAD_COLOR)
out = cv2.VideoWriter('./render_out/outp4.avi',
cv2.VideoWriter_fourcc(*'MJPG'),
50, (img.shape[1],img.shape[0]))
Nt = 64
Wt = caviar_tools.dft_codebook(Nt) / np.sqrt(Nt) # DFT Codebook
#exit(-1)
#angles_beam = caviar_tools.get_ula_beamangles(Wt, Nt, 32)
# Read simulation file
obj_list = []
with open(simulation_torender_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
csv_reader.__next__()
for row in csv_reader:
obj_pose = [float(row[2]), float(row[3]), float(row[4])]
obj_orientation = [float(row[5]), float(row[6]), float(row[7]), float(row[8])]
obj_out = [row[1],obj_pose, obj_orientation]
obj_list.append(obj_out)
rl_beam_index = []
with open(rl_out_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
csv_reader.__next__()
for row in csv_reader:
beam_index = [row[0], int(row[2])]
rl_beam_index.append(beam_index)
best_beam_index = []
with open(rl_out_path) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
csv_reader.__next__()
for row in csv_reader:
beam_index = [row[0], int(row[2])]
best_beam_index.append(beam_index)
caviar_tools.airsim_takeoff_all(client)
# Chose the UAV camera position and orientation, the video will be recorded using this camera
camera_pose = airsim.Pose(airsim.Vector3r(-8, 0, -5), airsim.to_quaternion(math.radians(-20), 0, 0)) #radians
client.simSetCameraPose("0", camera_pose)
# Simulation rendering process
print('Start rendering...')
beam_index_to_plot = 0
for obj in tqdm.tqdm(obj_list[::2]):
#check if it's a uav or other object
if 'uav' in obj[0]:
caviar_tools.airsim_setpose_offset(client, obj[0],obj[1][0], obj[1][1], obj[1][2], obj[2][0], obj[2][1], obj[2][2], obj[2][3])
time.sleep(0.1)
if rl_beam_index[beam_index_to_plot][1] == best_beam_index[beam_index_to_plot][1]:
angles_beam = caviar_tools.get_ula_beamangles(Wt, Nt, rl_beam_index[beam_index_to_plot][1])
print(angles_beam)
caviar_tools.unreal_plotbeam(client, 3000, angles_beam, 0, 0.1)
else:
angles_beam = caviar_tools.get_ula_beamangles(Wt, Nt, rl_beam_index[beam_index_to_plot][1])
caviar_tools.unreal_plotbeam(client, 3500, angles_beam, 0, 0.15)
angles_beam = caviar_tools.get_ula_beamangles(Wt, Nt, best_beam_index[beam_index_to_plot][1])
caviar_tools.unreal_plotbeam_best(client, 3000, angles_beam, 0, 0.1)
caviar_tools.unreal_plotbox(client, rl_beam_index[beam_index_to_plot][0], 0.1)
client.simPause(True)
rawimg = caviar_tools.airsim_getimages(client, caviar_config.drone_ids[0])
img = cv2.imdecode(airsim.string_to_uint8_array(rawimg), cv2.IMREAD_COLOR)
out.write(img)
beam_index_to_plot += 2
client.simPause(False)
else:
caviar_tools.unreal_setpose(client, obj[0],obj[1][0], obj[1][1], obj[1][2], obj[2][0], obj[2][1], obj[2][2], obj[2][3])
out.release()
print('Done')