-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbenchmark.py
281 lines (239 loc) · 9.1 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import time
import glob
import subprocess
import unidecode
import requests
from ratelimit import limits, sleep_and_retry
##
## Requires:
## HPO corpus (GSC/ or GSCplus - download from lasigeBioTM/IHP)
## MER (running locally and on an external server) - lasigeBioTM/MER
## Multifast - http://multifast.sourceforge.net/tool.php
## Bioportal API key
##
def get_hpo_documents(corpus=("GSCplus/documents/", "GSCplus/annotations/"), min_match_score=0, mapto="hpo"):
docs = {}
entities = {}
ontology_ids = {}
corpus_dir, annotations_dir = corpus
docs_list = os.listdir(corpus_dir)
documents_entity_list = {} # docID -> entity_list
docs_list = docs_list[:]
for idoc, file in enumerate(docs_list):
start_time = time.time()
entity_list = {} # entity -> candidate({name:, id:, incount, outcount, links, etc}
# print(file, idoc, len(docs_list))
document_entities = set()
#with open(corpus_dir + file) as f:
# text = f.readlines()[0]
doc_entities = []
doc_ontology_ids = []
#print(corpus_dir, file)
with open(corpus_dir + file) as f:
text = f.read().strip()
docs[file] = text
with open(annotations_dir + file) as f:
for line in f:
values = line.split("\t")
hpid, etext = values[1].strip().split(" | ")
#hpid = hpid.replace("_", ":")
#print(hpid)
#if hpid in alt_id_to_id:
# hpid = alt_id_to_id[hpid]
# updated_id += 1
start, end = values[0][1:-1].split("::")
start, end = int(start), int(end)
doc_entities.append((start, end, etext))
doc_ontology_ids.append((start, end, hpid))
entities[file] = doc_entities
ontology_ids[file] = doc_ontology_ids
return docs, entities, ontology_ids
def query_mer(doc_text):
entities = set()
ontoids = set()
base_url = ""
params = {"method": "getAnnotations",
"becalm_key": "",
"text": unidecode.unidecode(doc_text.replace('"', "'")),
"types": ["hp"],
"communication_id": 1}
r = requests.post(base_url, json=params, headers={'Content-type': 'text/plain; charset=utf-8'})
results = r.text
if len(results.strip()) > 0:
# print(results)
for l in results.strip().split("\n"):
v = l.split("\t")
entities.add((int(v[0]), int(v[1]), v[2]))
#ontoids.add((int(v[0]), int(v[1]), v[3].split("/")[-1]))
return entities, ontoids
def query_local_mer(doc_text):
entities = set()
ontoids = set()
os.chdir("MER/")
cmd = './get_entities.sh "' + doc_text.replace('"', "") + '" hp'
returned_output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE)
#print(returned_output)
results = returned_output.stdout.decode('utf-8')
os.chdir("../")
if len(results.strip()) > 0:
#print(results)
for l in results.strip().split("\n"):
#print(l)
v = l.split("\t")
entities.add((int(v[0]), int(v[1]), v[2]))
#ontoids.add((int(v[0]), int(v[1]), v[3].split("/")[-1]))
return entities, ontoids
def query_local_aho(doc_text):
entities = set()
ontoids = set()
#os.chdir("MER/")
#cmd = ["echo", doc_text, "|", 'multifast', "-P", "MER/data/ahohp.txt", "-"]
cmd = 'multifast -P MER/data/ahohp.txt -'
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True)
#print(process.args)
returned_output = process.communicate(input=doc_text)
#print(returned_output)
results = returned_output[0]
if len(results.strip()) > 0:
#print(results)
for l in results.strip().split("\n"):
if l.startswith("@"):
#print(l)
v = l.split(" ")
start = int(v[0][1:]) - 1
text = " ".join(v[1:])[1:-1]
end = start + len(text)
entities.add((start, end, text))
#ontoids.add((int(v[0]), int(v[1]), v[3].split("/")[-1]))
return entities, ontoids
#@sleep_and_retry
#@limits(calls=60, period=60)
def query_bioportal(doc_text):
entities = set()
ontoids = set()
base_url = "http://data.bioontology.org/annotator"
params = {"apikey": "",
"text": doc_text,
"ontologies": "HP"}
r = requests.get(base_url, params)
results = r.json()
for annot in results:
ontoid = annot["annotatedClass"]["@id"].split("/")[-1]
for a in annot["annotations"]:
entities.add((a["from"]-1, a["to"], doc_text[a["from"]-1:a["to"]]))
ontoids.add((a["from"]-1, a["to"], ontoid))
return entities, ontoids
def evaluate_results(gs, results):
fp = len(results - gs)
print("FP:", fp)
fn = len(gs - results)
print("FN:", fn)
tp = len(results & gs)
print("TP:", tp)
print("precision:", tp / (tp + fp))
print("recall:", tp / (tp + fn))
def get_gold_standard():
docs, entities, ontoids = get_hpo_documents()
gs_entities = set()
gs_ontoids = set()
for d in docs:
for e in entities[d]:
gs_entities.add((d, e[0], e[1], e[2]))
for o in ontoids[d]:
#print("ontoid", o)
gs_ontoids.add((d, o[0], o[1], o[2]))
return docs, gs_entities, gs_ontoids
def evaluate_local_mer(docs, gs_entities, gs_ontoids):
print("MER (local)")
# query mer
mer_entities = set()
mer_ontoids = set()
for d in docs:
doc_entities, doc_ontoids = query_local_mer(docs[d])
for e in doc_entities:
mer_entities.add((d, e[0], e[1], e[2]))
for o in doc_ontoids:
#if not o[2].startswith("PATO"):
mer_ontoids.add((d, o[0], o[1], o[2]))
print("entities evaluation")
evaluate_results(gs_entities, mer_entities)
#print("linking evaluation")
#evaluate_results(gs_ontoids, mer_ontoids)
return mer_entities, mer_ontoids
def evaluate_local_aho(docs, gs_entities, gs_ontoids):
print("AHO")
# query mer
mer_entities = set()
mer_ontoids = set()
for d in docs:
doc_entities, doc_ontoids = query_local_aho(docs[d])
for e in doc_entities:
mer_entities.add((d, e[0], e[1], e[2]))
for o in doc_ontoids:
#if not o[2].startswith("PATO"):
mer_ontoids.add((d, o[0], o[1], o[2]))
print("entities evaluation")
evaluate_results(gs_entities, mer_entities)
#print("linking evaluation")
#evaluate_results(gs_ontoids, mer_ontoids)
return mer_entities, mer_ontoids
def evaluate_mer(docs, gs_entities, gs_ontoids):
print("MER")
# query mer
mer_entities = set()
mer_ontoids = set()
for d in docs:
doc_entities, doc_ontoids = query_mer(docs[d])
for e in doc_entities:
mer_entities.add((d, e[0], e[1], e[2]))
for o in doc_ontoids:
#if not o[2].startswith("PATO"):
mer_ontoids.add((d, o[0], o[1], o[2]))
print("entities evaluation")
evaluate_results(gs_entities, mer_entities)
#print("linking evaluation")
#evaluate_results(gs_ontoids, mer_ontoids)
return mer_entities, mer_ontoids
def evaluate_bioportal(docs, gs_entities, gs_ontoids):
print("BIOPORTAL")
# query bioportal
bp_entities = set()
bp_ontoids = set()
for d in docs:
doc_entities, doc_ontoids = query_bioportal(docs[d])
for e in doc_entities:
bp_entities.add((d, e[0], e[1], e[2].lower()))
for o in doc_ontoids:
bp_ontoids.add((d, o[0], o[1], o[2]))
print("entities evaluation")
evaluate_results(gs_entities, bp_entities)
print("linking evaluation")
evaluate_results(gs_ontoids, bp_ontoids)
return bp_entities, bp_ontoids
def main():
docs, gs_entities, gs_ontoids = get_gold_standard()
import time
start = time.time()
mer_entities, mer_ontoids = evaluate_local_aho(docs, gs_entities, gs_ontoids)
end = time.time()
print("Local AHO time", end - start)
start = time.time()
mer_entities, mer_ontoids = evaluate_local_mer(docs, gs_entities, gs_ontoids)
end = time.time()
print("Local MER time", end - start)
start = time.time()
mer_entities, mer_ontoids = evaluate_mer(docs, gs_entities, gs_ontoids)
end = time.time()
print("MER time", end - start)
print("mer entities", len(mer_entities))
start = time.time()
bp_entities, bp_ontoids = evaluate_bioportal(docs, gs_entities, gs_ontoids)
end = time.time()
print("Bioportal time", end - start)
print("bioportal entities", len(bp_entities))
# entities found by BP but not MER
mer_fns = (gs_entities & bp_entities) - mer_entities
print(sorted(list(mer_fns), key=lambda x: x[0]))
if __name__ == "__main__":
main()