forked from adityachugh02/fetchbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
377 lines (314 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import cv2
from flask import Flask, flash, request, send_from_directory, render_template, Response
import time
import numpy as np
import base64
from PIL import Image
from flask_cors import CORS, cross_origin
import subprocess
import os
import shutil
import uuid
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # ignore tf warnings
import tensorflow as tf
import webbrowser
import urllib
camera = 1
ser = None
message = ""
classes = []
current_class = ""
model = ""
class_names = []
camera_object = cv2.VideoCapture(0)
with open("preferences.txt", "r") as file:
lines = file.readlines()
for line in lines:
if line.startswith("http://"):
IP_PORT = line.strip()
print(IP_PORT)
break
image = cv2.imread("offline.jpg")
ret, jpeg = cv2.imencode('.jpg', image)
pic = jpeg.tobytes()
def display_video():
global pic
global camera
while True:
if camera == 0:
try:
with urllib.request.urlopen(IP_PORT+'/get_video_frame') as f:
image=f.read()
except urllib.error.URLError as e:
print(e.reason)
time.sleep(1)
image = ""
if image !="":
try:
nparr = np.frombuffer(image, np.uint8)
image_2 = cv2.imdecode(nparr,cv2.IMREAD_UNCHANGED)
cv2.imwrite("temp.jpg", image_2)
ret, jpeg = cv2.imencode('.jpg', image_2)
pic = jpeg.tobytes()
except:
pass
#print("Video stream error")
else:
try:
ret, picture = camera_object.read()
k = 4
width = int((picture.shape[1])/k)
height = int((picture.shape[0])/k)
picture = cv2.resize(picture, (width, height), interpolation=cv2.INTER_AREA)
cv2.imwrite("temp.jpg", picture)
ret, jpeg = cv2.imencode('.jpg', picture)
pic = jpeg.tobytes()
except:
print("Camera error")
yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + pic + b'\r\n\r\n')
def train():
global model
global class_names
global message
try:
img_height = 180
img_width = 180
train_ds = tf.keras.utils.image_dataset_from_directory(
"classes",
labels="inferred",
image_size=(img_height, img_width)
)
class_names = train_ds.class_names
num_classes = len(class_names)
model = tf.keras.models.Sequential([
tf.keras.layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs=10
history = model.fit(train_ds, epochs=epochs)
message = "Training Successful"
except:
message = "Training Failed"
def predict(data):
global model
global class_names
img_height = 180
img_width = 180
if model != "":
img = tf.keras.utils.load_img(
"temp.jpg", target_size=(img_height, img_width)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])
if data == "class":
return str(class_names[np.argmax(score)])
else:
return str(round(100 * np.max(score)))
def run_code(code):
global proc
if code != "":
code_head ='''
# coding: latin-1
import src.fetchbot as fetchbot
import time
'''
code = code_head + code
with open("temp.py", "w+") as file:
file.write(code)
try:
subprocess.Popen.terminate(proc)
except:
print("No process to terminate")
proc = subprocess.Popen(['python','temp.py'])
else:
try:
subprocess.Popen.terminate(proc)
except:
print("No process to terminate")
global message
message = ""
def display_images():
global classes
global current_class
images = []
if len(classes) > 0:
class_directory = f"classes/{current_class}/"
list_of_images = filter( lambda x: os.path.isfile(os.path.join(class_directory, x)),
os.listdir(class_directory) )
list_of_images = sorted( list_of_images,
key = lambda x: os.path.getmtime(os.path.join(class_directory, x))
)
for filename in list_of_images:
with open(f"classes/{current_class}/{filename}", "rb") as image_file:
encoded_string = (base64.b64encode(image_file.read())).decode()
images.append(encoded_string)
images.reverse()
return images
def get_classes():
global classes
global current_class
classes = []
for folder in os.listdir(f"classes/"):
classes.append(folder)
if len(classes) > 0:
current_class = classes[-1]
return
def delete_classes():
global current_class
current_class = ""
if os.path.isdir("classes") == True:
shutil.rmtree("classes")
os.mkdir("classes")
else:
os.mkdir("classes")
return
def copy_image(target):
try:
shutil.copyfile("temp.jpg", target)
img = Image.open(target)
img.verify()
return
except:
print("Bad image")
copy_image(target)
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
webbrowser.open("index.html")
@app.route('/video')
def video():
global camera
#if camera == 0:
# connect()
return render_template("video.html")
@app.route('/jquery-3.6.0.js')
def js():
return app.send_static_file('jquery-3.6.0.js')
@app.route('/video_feed')
def video_feed():
return Response(display_video(),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/camera', methods=['POST'])
def switch_camera():
global camera
if camera == 0:
camera = 1
else:
camera =0
return video()
@app.route('/command', methods=['POST'])
def command():
command = (request.data).decode()
if command != "":
if command == "forward":
print("forward")
res=urllib.request.urlopen(IP_PORT+"/forward")
elif command == "backward":
print("backward")
res=urllib.request.urlopen(IP_PORT+"/backward")
elif command == "left":
print("left")
res=urllib.request.urlopen(IP_PORT+"/left")
elif command == "right":
print("right")
res=urllib.request.urlopen(IP_PORT+"/right")
else:
print(command)
return "200"
@app.route('/code', methods=['POST'])
def code():
code = (request.data).decode()
run_code(code)
return "200"
@app.route('/message_in', methods=['POST'])
def message_in():
global message
message = ((request.data).decode('latin-1'))
return "200"
@app.route('/message_out', methods=['POST'])
def message_out():
global message
return Response(message)
@app.route('/predict', methods=['POST'])
def predict_():
data = (request.data).decode()
return Response(predict(data))
@app.route('/classifier')
def classifier():
run_code("")
if os.path.isdir("classes") != True:
os.mkdir("classes")
get_classes()
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/new_class', methods=['POST'])
def new_class():
global classes
global current_class
if request.method == 'POST':
new_class = request.form['new_class']
if (new_class != "") and (new_class not in classes):
classes.append(new_class)
os.mkdir("classes/"+new_class)
current_class = new_class
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/select_class', methods=['POST'])
def select_class():
global classes
global current_class
selected_class = request.form["selected_class"]
classes.remove(selected_class)
classes.sort()
classes.append(selected_class)
current_class = selected_class
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/train', methods=['POST'])
def train_model():
global classes
if len(classes) > 0:
train()
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/delete_class', methods=['POST'])
def delete_class():
global classes
global current_class
if current_class in classes:
classes.remove(current_class)
if os.path.isdir("classes/"+current_class) == True:
shutil.rmtree("classes/"+current_class)
if len(classes) > 0:
current_class = classes[-1]
else:
current_class = ""
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/delete_all', methods=['POST'])
def delete_all():
global classes
global current_class
classes = []
current_class = ""
delete_classes()
return render_template("classifier.html", classes=classes, images=display_images())
@app.route('/get_image', methods=['POST'])
def get_image():
global current_class
if current_class != "":
unique = str(uuid.uuid4())
print(unique)
target = f"classes/{current_class}/{unique}.jpg"
print(target)
copy_image(target)
return render_template("classifier.html", classes=classes, images=display_images())
app.run(host='0.0.0.0', port=5000, threaded=True, debug=False)