Skip to content

Latest commit

 

History

History
242 lines (167 loc) · 5.75 KB

readme.md

File metadata and controls

242 lines (167 loc) · 5.75 KB

PydanticMongo

PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.

Version

0.1.4.3

Changes:

  • updated requirements versions
  • added support for mongo indexes
  • added support for a Literal type
  • some other minor fixes

Project Structure

root
|-- pydantic_mongo
|   |-- __init__.py
|   |-- base.py
|   |-- base_pm_model.py
|   |-- db_ref_model.py
|   |-- extensions.py
|   |-- helpers.py
|   |-- meta.py
|   |-- mongo_model.py
|   |-- pm_model.py
|-- tests
|   |-- integration
|   |-- unit
|-- readme.md
|-- requirements.txt
|-- setup.py

Installation

To install PydanticMongo, you can clone the repository from GitHub or install it using pip:

pip install git+https://github.com/laruss/pydantic-mongo

Note: Ensure you are using Python 3.10 or newer.

Usage

  1. Initialization:
from pydantic_mongo import PydanticMongo

pm = PydanticMongo()
pm.init_app(app)
  1. Model creation:
from pydantic_mongo import PydanticMongoModel as PmModel

class YourModel(PmModel):
    ...

2.1. Model creation with DBRefs as dicts with "collection", "database" and "id" keys:

class YourModel(PmModel):
    nested_model: AnotherModel = AnotherModel()

data = {"nested_model": {"collection": "another_models", "database": "", "id": "id"}}
instance = YourModel.get_with_parse_db_refs(data)

2.2. Model creation with forward references:

from __future__ import annotations
from typing import ForwardRef

class YourModel(PmModel):
    nested_model: ForwardRef("AnotherModel") = AnotherModel()
    nested_model_list: List[ForwardRef("AnotherModel")] = [AnotherModel()]
    nested_model_dict: Dict[str, ForwardRef("AnotherModel")] = {"key": AnotherModel()}

class AnotherModel(PmModel):
    name: str
    
YourModel.model_rebuild()

another_model = AnotherModel(name="name").save()
data = {"nested_model": another_model, "nested_model_list": [another_model]}
instance = YourModel(**data).save()

2.3 Model creation with field indexing:

from pydantic_mongo import PydanticMongoModel as PmModel
from pymongo import IndexModel

class YourModel(PmModel):
    name: str
    age: int

    class _MongoConfig:
        indexes = [
            IndexModel([("name", 1)]),
            IndexModel([("age", 1)], unique=True)
        ]
        
YourModel(name="name", age=1).save()
YourModel(name="name", age=2).save()  # will raise PyMongoError
YourModel(name="name2", age=1).save() # will raise PyMongoError
  1. Data operations:
  • Retrieving by ID:
instance = YourModel.get_by_id(your_id)
  • Retrieving by filter:
instance = YourModel.get_by_filter({"field": "value"})
  • Saving data:
instance.save()
  • Deleting data:
instance.delete()
  • Retrieving objects by filter:
objects = list(YourModel.objects({"field": "value"}))

Key Features

  • get_by_id: Retrieve an object by its ID.

  • get_by_filter: Retrieve an object based on a specified filter.

  • save: Save or update an object in the database.

  • delete: Delete an object from the database.

  • objects: Retrieve all objects that match a given filter.

  • model_dump: Get a dictionary representation of the model.

  • model_json_schema: Retrieve the JSON schema of the model.

  • db_ref: Get a DBRef object for the model.

  • get_ref_objects: Get the objects referenced to an object by a DBRef.

Easy Document References

With PydanticMongo, creating references to other documents is straightforward.

Example:

from pydantic_mongo import PydanticMongoModel as PmModel

class YourAwesomeChild(PmModel):
    name: str

class YourAwesomeParent(PmModel):
    name: str
    children: List[YourAwesomeChild]

child = YourAwesomeChild(name="Victor")
child.save()

parent = YourAwesomeParent(name="Sam", children=[child])
parent.save()
print(parent)  # _id="id", name="Sam", children=[_id="id", name="Victor"]

In the database, these are represented by using bson.ObjectId linking to the your_awesome_childs collection.

Note: When a Document is referred as a db_ref, it won't be loaded until it is accessed. This is done to avoid circular references.

Test Coverage

Made with pytest-cov

Name                              Stmts   Miss  Cover
-----------------------------------------------------
pydantic_mongo/__init__.py            2      0   100%
pydantic_mongo/base.py               63      2    97%
pydantic_mongo/base_pm_model.py     145      2    99%
pydantic_mongo/db_ref_model.py       11      0   100%
pydantic_mongo/extensions.py         28      1    96%
pydantic_mongo/helpers.py            45      0   100%
pydantic_mongo/meta.py               57      3    95%
pydantic_mongo/mongo_model.py        73      1    99%
pydantic_mongo/pm_model.py           42      0   100%
-----------------------------------------------------
TOTAL                               466      9    98%

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. To run the tests, use pytest:

pytest ./tests/unit
pytest ./tests/integration

Note: Integration tests require a running MongoDB instance.

Conclusion

PydanticMongo offers a powerful toolset for working with MongoDB in Flask applications, integrating seamlessly with Pydantic for data validation and serialization. Use it to simplify and structure your database-interaction code.

TODO

  • Check for all the available pydantic methods
  • Check for all the available mongo types
  • Add support of various DBRef types