-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrace.py
85 lines (65 loc) · 3.72 KB
/
trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from argparse import ArgumentParser
from pathlib import Path
from utils.hparams import create_hparams
from train import load_model, load_checkpoint
from model.gst import TextEncoder
def trace_model(checkpoints_dir, save_path, tpse=True, gst_vector_coef=0.15, gst_vector_ind=5):
hparams = create_hparams(checkpoints_dir / "config.yaml")
hparams.experiment.distributed_run = False
checkpoint_path = str(sorted(checkpoints_dir.glob("*checkpoint*"), key=lambda p: p.stat().st_mtime)[-1])
model = load_model(hparams, inference=True)
_ = load_checkpoint(checkpoint_path, model)
if model.use_gst:
if not tpse:
# USE TO SAVE WITH CONSTANT GST VECTOR
query = torch.zeros(1, 1, model.gst.ref_encoder_dim).cuda().half()
GST = torch.tanh(model.gst.style_token_layer.style_tokens)
key = GST[gst_vector_ind].unsqueeze(0).expand(1, -1, -1) * gst_vector_coef
style_emb = model.gst.style_token_layer.attention(query, key).squeeze(1)
class ConstantTextEncoderInfer(torch.nn.Module):
def __init__(self):
super().__init__()
self.gst = style_emb
def forward(self, inputs, input_lens, bert_outs, bert_lens):
return self.gst.to(inputs.device)
tpse_model = ConstantTextEncoderInfer()
else:
if not (checkpoints_dir / "tpse_predictor_weights.pth").exists():
raise RuntimeError(f"Couldn't find tpse weights in checkpoint folder!!! "
f"Run python train_tpse.py -c {checkpoints_dir} --vectors_dir VECTORS_DIR"
f"or set tpse argument to false!")
class TextEncoderInfer(TextEncoder):
def forward(self, inputs, input_lens, bert_outs, bert_lens):
return self.infer(inputs, input_lens, bert_outs, bert_lens)
tpse_model = TextEncoderInfer(hparams.model.encoder_lstm_hidden_dim * 2, # as we do bidirectional lstm
hparams.model.bert_embedding_dim, hparams.model.gst_embedding_dim,
hparams.model.gst_tpse_gru_hidden_size, hparams.model.gst_tpse_num_layers)
tpse_model.load_state_dict(torch.load(checkpoints_dir / "tpse_predictor_weights.pth"))
del model.gst
_ = tpse_model.cuda().eval().half()
model.gst_text_encoder = tpse_model
else:
class Noop(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, inputs, input_lens, bert_outs, bert_lens):
return torch.zeros(1)
tpse_model = Noop()
_ = tpse_model.cuda().eval().half()
model.gst_text_encoder = tpse_model
_ = model.cuda().eval().half()
with torch.jit.optimized_execution(True):
script = torch.jit.script(model)
script = torch.jit.freeze(script)
torch.jit.save(script, save_path)
print(f"successfully traced and saved model to {save_path}")
if __name__ == "__main__":
p = ArgumentParser(description="trace tacotron2 model using jit")
p.add_argument("--checkpoint_dir", "-c", help='checkpoint directory with config and optionally tpse weights',
type=Path, required=True)
p.add_argument("--save_path", type=Path, help='path to saved jit model')
p.add_argument("--disable_tpse", action='store_true', help='whether or not to disable tpse when loading checkpoint')
p.add_argument("--gst_ind", type=int, help='global style tokens index to query', default=0)
args = p.parse_args()
trace_model(args.checkpoint_dir, args.save_path, tpse=not args.disable_tpse, gst_vector_ind=args.gst_ind)