-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgatool.py
executable file
·302 lines (227 loc) · 10.5 KB
/
gatool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python
__author__ = 'Alexander Ponomarev'
import sys
import re
import os
import subprocess
import tempfile
import pickle
import hashlib
from os import path
from ev import Mutators, Initializators
from optparse import OptionParser, OptionGroup
from pyevolve import G1DList, GSimpleGA, Consts, Selectors
RANGE_TEMPLATE = '{{(-?\d+),(-?\d+)}}'
class TempFsCache:
def __init__(self):
self.tempdir = path.join(tempfile.gettempdir(), 'gatool')
if not path.exists(self.tempdir):
os.makedirs(self.tempdir)
def get(self, key):
hash_key = hashlib.md5(key).hexdigest()
filename = path.join(self.tempdir, hash_key)
if not path.exists(filename):
raise KeyError("No such key in cache")
with open(filename, 'rb') as f:
return pickle.load(f)
def put(self, key, value):
hash_key = hashlib.md5(key).hexdigest()
filename = path.join(self.tempdir, hash_key)
with open(filename, 'wb') as f:
return pickle.dump(value, f)
class FakeCache:
def get(self, key): raise KeyError()
def put(self, key, value): pass
cache = FakeCache()
def vararg_callback(option, opt_str, value, parser):
assert value is None
value = []
for arg in parser.rargs:
if arg[:2] == "--" and len(arg) > 2:
break
if arg[:1] == "-" and len(arg) > 1:
break
value.append(arg)
del parser.rargs[:len(value)]
setattr(parser.values, option.dest, value)
def get_options():
parser = OptionParser(
usage="\nImagine we need to choose values for equation 2*X+4*Y^2=32"
"\nLet's solve it with python. Roughly it will look like:"
"\n\npython -c \"print 2*X+4*pow(Y,2)\""
"\n\nReplace those X and Y with syntaxis acceptable by gatool:"
"\n\npython -c \"print 2*{-3,6}+4*pow({1,10},2)\""
"\n\nHere {-3,6} is a range that X can accept, the same for Y"
"\nThe final command that will choose variables with genetic algorithm is:"
"\n\ngatool.py --cmd \"python -c \\\"print 2*{-3,6}+4*pow({1,10},2)\\\"\" --target-value 32"
"\nSee other parameters to set up genetic algorithm")
group_general = OptionGroup(parser, "General options")
group_general.add_option("--cmd", dest="cmd",
help="[REQUIRED] Command pattern to be executed. "
"[default: %default]")
group_general.add_option("--target-value", type="float", dest="target_value",
help="[REQUIRED] The value that function will "
"attempt to reach. [default: %default]")
group_general.add_option("--initial-values", dest="initial_values",
action="callback",
callback=vararg_callback,
help="[NOT SUPPORTED YET] Initial arguments values. "
"[default: %default]")
group_general.add_option("--multithreading", type="int", dest="multithreading",
default=0,
help="Enables multithreading (1 or 0). [default: "
"%default]")
parser.add_option_group(group_general)
group_ga = OptionGroup(parser, "Genetic algorithm common")
group_ga.add_option("--generations", type="int", dest="generations",
default=Consts.CDefGAGenerations,
help="Maximum number of generations. Range: 1-inf. "
"[default: %default]")
group_ga.add_option("--population", type="int", dest="population",
default=Consts.CDefGAPopulationSize,
help="Size of population. Range: 2-inf. [default: "
"%default]", )
group_ga.add_option("--mutation-rate", type="float", dest="mutation_rate",
default=Consts.CDefGAMutationRate,
help="Mutation rate. Range: 0.0-1.0. [default: %default]")
group_ga.add_option("--crossover-rate", type="float", dest="crossover_rate",
default=Consts.CDefGACrossoverRate,
help="Crossover rate. Range: 0.0-1.0. [default: %default]")
group_ga.add_option("--selector", dest="selector",
default='GRankSelector',
help="Default selector. May be GRankSelector, GTournamentSelector, "
"GUniformSelector, GRouletteWheel. [default: %default]")
group_ga.add_option("--ellitism-replacement", type="int", dest="ellitism_replacement",
default=Consts.CDefGAElitismReplacement,
help="How many best organisms of this generation will be "
"used in the next generation "
"without modification. Range: 0-population. [default: "
"%default]")
parser.add_option_group(group_ga)
group_gauss = OptionGroup(parser, "Gaussian mutator options")
group_gauss.add_option("--mutation-gauss-mu", type="float", dest="mutation_gauss_mu",
default=Consts.CDefG1DListMutIntMU,
help="Mu in gauss distribution for mutation step. [default: "
"%default]")
group_gauss.add_option("--mutation-gauss-sigma", type="float",
dest="mutation_gauss_sigma",
default=Consts.CDefG1DListMutIntSIGMA,
help="Sigma in gauss distribution for mutation step. "
"[default: %default]")
parser.add_option_group(group_gauss)
group_stat = OptionGroup(parser, "Statistics")
group_stat.add_option("--stats-show-freq", dest="stats_show_freq", type='int',
default=10,
help="How frequently statistics will be shown. Once in n "
"iteration. 0 - do not show. "
"[default: %default]")
group_stat.add_option("--print-organisms", dest="print_organisms", type='int',
default=0,
help="Prints organisms at each iteration (0 or 1). "
"[default: %default]")
parser.add_option_group(group_stat)
group_cache = OptionGroup(parser, "Cache")
group_cache.add_option("--use-cache", dest="use_cache", type='int',
default=0,
help="Specifies whether cache will be used (0 or 1). "
"Warning: Default cache is file system cache in temp directory. "
"[default: %default]")
parser.add_option_group(group_cache)
(options, args) = parser.parse_args()
if not options.cmd:
print "Cmd not specified"
exit(1)
if not options.target_value:
print "Target value not specified"
exit(1)
return options
def get_bad_value():
return sys.maxint # TODO: correct it
def execute_cmd(cmd_template, args):
args = map(int, args)
cmd = cmd_template.format(*args)
try:
return cache.get(cmd)
except KeyError:
pass
pipe = subprocess.PIPE
proc = subprocess.Popen(cmd, shell=True, stdout=pipe)
stdout_text = proc.communicate()[0]
ret = proc.wait()
if ret != 0:
result = get_bad_value()
cache.put(cmd, result)
return result
try:
result = float(stdout_text)
cache.put(cmd, result)
return result
except ValueError:
result = get_bad_value()
cache.put(cmd, result)
return result
def eval_func(chromosome):
cmd_template = chromosome.getParam('cmd_template')
target_value = chromosome.getParam('target_value')
result = execute_cmd(cmd_template, chromosome.getInternalList())
val = abs(target_value - result)
if chromosome.getParam('print_organisms') == 1:
print '{}, score: {}'.format(chromosome.getInternalList(), val)
return val
def print_best(ga):
print 'Best: {}, score: {}'.format(ga.bestIndividual().getInternalList(),
ga.bestIndividual().getRawScore())
def step_callback(ga):
if ga.currentGeneration % ga.getParam('freq_stats') == 0:
print_best(ga)
if ga.getParam('print_organisms') == 1:
print '\n' # prints separator of each iteration organisms
return False
def main():
opts = get_options()
if opts.use_cache:
global cache
cache = TempFsCache()
# escapes cmd string replacing {} by {{}}
opts.cmd = re.sub('{(?P<block>[^}]*)}', '{{\g<block>}}', opts.cmd)
num_args = len([m.start() for m in re.finditer(RANGE_TEMPLATE, opts.cmd)])
minlist = []
maxlist = []
for minmax in re.findall(RANGE_TEMPLATE, opts.cmd):
minlist.append(int(minmax[0]))
maxlist.append(int(minmax[1]))
# cleans up ranges and converts them just to {} for format() function
opts.cmd = re.sub(RANGE_TEMPLATE, '{}', opts.cmd)
genome = G1DList.G1DList(num_args)
genome.mutator.set(Mutators.G1DListMutatorIntegerGaussian)
genome.initializator.set(Initializators.G1DListInitializatorInteger)
genome.setParams(cmd_template=opts.cmd)
genome.setParams(target_value=opts.target_value)
genome.setParams(bestrawscore=0)
genome.setParams(print_organisms=opts.print_organisms)
genome.setParams(rangemin=minlist)
genome.setParams(rangemax=maxlist)
genome.setParams(gauss_mu=opts.mutation_gauss_mu)
genome.setParams(gauss_sigma=opts.mutation_gauss_sigma)
genome.evaluator.set(eval_func)
ga = GSimpleGA.GSimpleGA(genome)
ga.stepCallback.set(step_callback)
ga.setGenerations(opts.generations)
ga.selector.set(getattr(Selectors, opts.selector))
ga.setMinimax(Consts.minimaxType["minimize"])
ga.terminationCriteria.set(GSimpleGA.RawScoreCriteria)
ga.setParams(freq_stats=opts.stats_show_freq)
ga.setParams(print_organisms=opts.print_organisms)
if opts.ellitism_replacement == 0:
ga.setElitism(False)
else:
ga.setElitism(True)
ga.setElitismReplacement(opts.ellitism_replacement)
ga.setMultiProcessing(True if opts.multithreading == 1 else False)
ga.setPopulationSize(opts.population)
ga.setMutationRate(opts.mutation_rate)
ga.setCrossoverRate(opts.crossover_rate)
ga.evolve(freq_stats=opts.stats_show_freq)
print_best(ga)
if __name__ == '__main__':
main()