forked from yuxinzhu/tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bustersAgents.py
173 lines (140 loc) · 6.96 KB
/
bustersAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# bustersAgents.py
# ----------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and Pieter
# Abbeel in Spring 2013.
# For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
import util
from game import Agent
from game import Directions
from keyboardAgents import KeyboardAgent
import inference
import busters
class NullGraphics:
"Placeholder for graphics"
def initialize(self, state, isBlue = False): pass
def update(self, state): pass
def pause(self): pass
def draw(self, state): pass
def updateDistributions(self, dist): pass
def finish(self): pass
class KeyboardInference(inference.InferenceModule):
"""
Basic inference module for use with the keyboard.
"""
def initializeUniformly(self, gameState):
"Begin with a uniform distribution over ghost positions."
self.beliefs = util.Counter()
for p in self.legalPositions: self.beliefs[p] = 1.0
self.beliefs.normalize()
def observe(self, observation, gameState):
noisyDistance = observation
emissionModel = busters.getObservationDistribution(noisyDistance)
pacmanPosition = gameState.getPacmanPosition()
allPossible = util.Counter()
for p in self.legalPositions:
trueDistance = util.manhattanDistance(p, pacmanPosition)
if emissionModel[trueDistance] > 0: allPossible[p] = 1.0
allPossible.normalize()
self.beliefs = allPossible
def elapseTime(self, gameState):
pass
def getBeliefDistribution(self):
return self.beliefs
class BustersAgent:
"An agent that tracks and displays its beliefs about ghost positions."
def __init__( self, index = 0, inference = "ExactInference", ghostAgents = None, observeEnable = True, elapseTimeEnable = True):
inferenceType = util.lookup(inference, globals())
self.inferenceModules = [inferenceType(a) for a in ghostAgents]
self.observeEnable = observeEnable
self.elapseTimeEnable = elapseTimeEnable
def registerInitialState(self, gameState):
"Initializes beliefs and inference modules"
import __main__
self.display = __main__._display
for inference in self.inferenceModules: inference.initialize(gameState)
self.ghostBeliefs = [inf.getBeliefDistribution() for inf in self.inferenceModules]
self.firstMove = True
def observationFunction(self, gameState):
"Removes the ghost states from the gameState"
agents = gameState.data.agentStates
gameState.data.agentStates = [agents[0]] + [None for i in range(1, len(agents))]
return gameState
def getAction(self, gameState):
"Updates beliefs, then chooses an action based on updated beliefs."
for index, inf in enumerate(self.inferenceModules):
if not self.firstMove and self.elapseTimeEnable:
inf.elapseTime(gameState)
self.firstMove = False
if self.observeEnable:
inf.observeState(gameState)
self.ghostBeliefs[index] = inf.getBeliefDistribution()
self.display.updateDistributions(self.ghostBeliefs)
return self.chooseAction(gameState)
def chooseAction(self, gameState):
"By default, a BustersAgent just stops. This should be overridden."
return Directions.STOP
class BustersKeyboardAgent(BustersAgent, KeyboardAgent):
"An agent controlled by the keyboard that displays beliefs about ghost positions."
def __init__(self, index = 0, inference = "KeyboardInference", ghostAgents = None):
KeyboardAgent.__init__(self, index)
BustersAgent.__init__(self, index, inference, ghostAgents)
def getAction(self, gameState):
return BustersAgent.getAction(self, gameState)
def chooseAction(self, gameState):
return KeyboardAgent.getAction(self, gameState)
from distanceCalculator import Distancer
from game import Actions
from game import Directions
class GreedyBustersAgent(BustersAgent):
"An agent that charges the closest ghost."
def registerInitialState(self, gameState):
"Pre-computes the distance between every two points."
BustersAgent.registerInitialState(self, gameState)
self.distancer = Distancer(gameState.data.layout, False)
def chooseAction(self, gameState):
"""
First computes the most likely position of each ghost that
has not yet been captured, then chooses an action that brings
Pacman closer to the closest ghost (in maze distance!).
To find the maze distance between any two positions, use:
self.distancer.getDistance(pos1, pos2)
To find the successor position of a position after an action:
successorPosition = Actions.getSuccessor(position, action)
livingGhostPositionDistributions, defined below, is a list of
util.Counter objects equal to the position belief distributions
for each of the ghosts that are still alive. It is defined based
on (these are implementation details about which you need not be
concerned):
1) gameState.getLivingGhosts(), a list of booleans, one for each
agent, indicating whether or not the agent is alive. Note
that pacman is always agent 0, so the ghosts are agents 1,
onwards (just as before).
2) self.ghostBeliefs, the list of belief distributions for each
of the ghosts (including ghosts that are not alive). The
indices into this list should be 1 less than indices into the
gameState.getLivingGhosts() list.
"""
pacmanPosition = gameState.getPacmanPosition()
legal = [a for a in gameState.getLegalPacmanActions()]
livingGhosts = gameState.getLivingGhosts()
livingGhostPositionDistributions = [beliefs for i,beliefs
in enumerate(self.ghostBeliefs)
if livingGhosts[i+1]]
"*** YOUR CODE HERE ***"
localMax = []
for belief in livingGhostPositionDistributions:
localMax.append(belief.argMax())
goalCoordinate, goalProbability = None, 0
for index, coordinate in enumerate(localMax):
if livingGhostPositionDistributions[index][coordinate] >= goalProbability:
goalCoordinate, goalProbability = coordinate, livingGhostPositionDistributions[index][coordinate]
temp = []
for action in legal:
nextLocation = Actions.getSuccessor(pacmanPosition, action)
temp.append((self.distancer.getDistance(nextLocation, goalCoordinate), action))
return min(temp)[1]
# util.raiseNotDefined()