-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaugmentation.py
132 lines (111 loc) · 4.69 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# This script borrow from
# https://github.com/STVIR/pysot/blob/master/pysot/datasets/augmentation.py
import numpy as np
import cv2
from utils.coordinate import corner2center, Center, center2corner, Corner
class Augmentation:
def __init__(self, shift, scale, blur, flip, color):
self.shift = shift
self.scale = scale
self.blur = blur
self.flip = flip
self.color = color
self.rgbVar = np.array(
[[-0.55919361, 0.98062831, - 0.41940627],
[1.72091413, 0.19879334, - 1.82968581],
[4.64467907, 4.73710203, 4.88324118]], dtype=np.float32)
@staticmethod
def random():
return np.random.random() * 2 - 1.0
def _crop_roi(self, image, bbox, out_sz, padding=(0, 0, 0)):
bbox = [float(x) for x in bbox]
a = (out_sz-1) / (bbox[2]-bbox[0])
b = (out_sz-1) / (bbox[3]-bbox[1])
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz),
borderMode=cv2.BORDER_CONSTANT,
borderValue=padding)
return crop
def _blur_aug(self, image):
def rand_kernel():
sizes = np.arange(5, 46, 2)
size = np.random.choice(sizes)
kernel = np.zeros((size, size))
c = int(size/2)
wx = np.random.random()
kernel[:, c] += 1. / size * wx
kernel[c, :] += 1. / size * (1-wx)
return kernel
kernel = rand_kernel()
image = cv2.filter2D(image, -1, kernel)
return image
def _color_aug(self, image):
offset = np.dot(self.rgbVar, np.random.randn(3, 1))
offset = offset[::-1] # bgr 2 rgb
offset = offset.reshape(3)
image = image - offset
return image
def _gray_aug(self, image):
grayed = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.cvtColor(grayed, cv2.COLOR_GRAY2BGR)
return image
def _shift_scale_aug(self, image, bbox, crop_bbox, size):
im_h, im_w = image.shape[:2]
# adjust crop bounding box
crop_bbox_center = corner2center(crop_bbox)
if self.scale:
scale_x = (1.0 + Augmentation.random() * self.scale)
scale_y = (1.0 + Augmentation.random() * self.scale)
h, w = crop_bbox_center.h, crop_bbox_center.w
scale_x = min(scale_x, float(im_w) / w)
scale_y = min(scale_y, float(im_h) / h)
crop_bbox_center = Center(crop_bbox_center.x,
crop_bbox_center.y,
crop_bbox_center.w * scale_x,
crop_bbox_center.h * scale_y)
crop_bbox = center2corner(crop_bbox_center)
if self.shift:
sx = Augmentation.random() * self.shift
sy = Augmentation.random() * self.shift
x1, y1, x2, y2 = crop_bbox
sx = max(-x1, min(im_w - 1 - x2, sx)) # 左右两边不要超出
sy = max(-y1, min(im_h - 1 - y2, sy)) # 上下两边不要超出
crop_bbox = Corner(x1 + sx, y1 + sy, x2 + sx, y2 + sy)
# adjust target bounding box
x1, y1 = crop_bbox.x1, crop_bbox.y1
bbox = Corner(bbox.x1 - x1, bbox.y1 - y1,
bbox.x2 - x1, bbox.y2 - y1)
if self.scale:
bbox = Corner(bbox.x1 / scale_x, bbox.y1 / scale_y,
bbox.x2 / scale_x, bbox.y2 / scale_y)
image = self._crop_roi(image, crop_bbox, size)
return image, bbox
def _flip_aug(self, image, bbox):
image = cv2.flip(image, 1)
width = image.shape[1]
bbox = Corner(width - 1 - bbox.x2, bbox.y1,
width - 1 - bbox.x1, bbox.y2)
return image, bbox
def __call__(self, image, bbox, size, gray=False):
# bbox: [xyxy] size: 127/255
shape = image.shape # H == W
crop_bbox = center2corner(Center(shape[0]//2, shape[1]//2,
size-1, size-1))
# gray augmentation
if gray:
image = self._gray_aug(image)
# shift scale augmentation
image, bbox = self._shift_scale_aug(image, bbox, crop_bbox, size)
# color augmentation
if self.color > np.random.random():
image = self._color_aug(image)
# blur augmentation
if self.blur > np.random.random():
image = self._blur_aug(image)
# flip augmentation
if self.flip and self.flip > np.random.random():
image, bbox = self._flip_aug(image, bbox)
return image, bbox