-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_llama2.py
318 lines (274 loc) · 10.5 KB
/
bench_llama2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from dataclasses import dataclass
from typing import Callable
import time
import numpy as np
import jax
from jax import numpy as jnp
import flax
from flax import linen as nn
import optax
from safetensors import safe_open
from jax_flash_attn import run_mha
BSIZE = 1
USE_SAFETENSORS = True
SEQLEN = 4096
@dataclass
class Config:
hidden_size: int
intermediate_size: int
vocab_size: int
num_hidden_layers: int
num_attention_heads: int
rms_norm_eps: float
rope_theta: float
use_flash_attn: bool
def v2_7b(use_flash_attn: bool):
return Config(
hidden_size=4096,
intermediate_size=11008,
vocab_size=32000,
num_hidden_layers=32,
num_attention_heads=32,
rms_norm_eps=1e-5,
rope_theta=1e4,
use_flash_attn=use_flash_attn,
)
def flops(self, bsize, seqlen):
# Attention flops
flops = 4 * bsize * seqlen ** 2 * self.hidden_size # b.q.k.h.d
flops += 2 * bsize * seqlen * self.hidden_size ** 2
# MLP flops
flops += 2 * bsize * seqlen * self.hidden_size * self.intermediate_size * 3
flops *= self.num_hidden_layers
return flops
class RmsNorm(nn.Module):
sz: int
eps: float = 1e-5
w_init: Callable = nn.initializers.ones_init()
def setup(self):
self.ws = self.param('weight', self.w_init, (self.sz,))
def __call__(self, xs):
return xs / jnp.sqrt((xs * xs).mean(-1, keepdims=True) + self.eps) * self.ws
class RotaryEmbeddings(nn.Module):
cfg: Config
def setup(self):
head_dim = self.cfg.hidden_size // self.cfg.num_attention_heads
theta = (1 / jnp.power(self.cfg.rope_theta, jnp.arange(0, head_dim, 2) / head_dim)).reshape((1, -1))
idx = jnp.arange(SEQLEN).astype('float32').reshape((-1, 1))
idx_theta = idx @ theta
idx_theta = jnp.concatenate((idx_theta, idx_theta), -1)
self.cos = jnp.cos(idx_theta).reshape((1, SEQLEN, 1, head_dim))
self.sin = jnp.sin(idx_theta).reshape((1, SEQLEN, 1, head_dim))
def __call__(self, xs):
head_dim = self.cfg.hidden_size // self.cfg.num_attention_heads
xs1 = xs[:, :, :, :head_dim // 2]
xs2 = xs[:, :, :, head_dim // 2:]
rotate_x = jnp.concatenate((-xs2, xs1), -1)
rope = xs * self.cos.astype(xs.dtype) + rotate_x * self.sin.astype(xs.dtype)
return rope
class CausalSelfAttention(nn.Module):
hidden_size: int
num_attention_heads: int
use_flash_attn: bool
rotary_embeddings: RotaryEmbeddings
mask: jax.Array
def setup(self):
hidden_size = self.hidden_size
self.q_proj = nn.Dense(hidden_size, use_bias=False)
self.k_proj = nn.Dense(hidden_size, use_bias=False)
self.v_proj = nn.Dense(hidden_size, use_bias=False)
self.o_proj = nn.Dense(hidden_size, use_bias=False)
def __call__(self, xs):
b_sz, seq_len, hidden_size = xs.shape
q = self.q_proj(xs)
k = self.k_proj(xs)
v = self.v_proj(xs)
nha = self.num_attention_heads
head_size = hidden_size // nha
q = q.reshape((b_sz, seq_len, nha, head_size))
k = k.reshape((b_sz, seq_len, nha, head_size))
v = v.reshape((b_sz, seq_len, nha, head_size))
q = self.rotary_embeddings(q)
k = self.rotary_embeddings(k)
softmax_scale = 1.0 / head_size ** 0.5
if self.use_flash_attn:
output = run_mha(q, k, v, is_causal=True, softmax_scale=softmax_scale)
else:
q = q.astype('float32')
k = k.astype('float32')
v = v.astype('float32')
q = q.transpose((0, 2, 1, 3))
attn = q @ k.transpose((0, 2, 3, 1)) + self.mask
attn = jax.nn.softmax(attn * softmax_scale)
output = attn @ v.transpose((0, 2, 1, 3))
output = output.transpose((0, 2, 1, 3))
output = output.astype(xs.dtype)
return self.o_proj(output.reshape(xs.shape))
class MLP(nn.Module):
hidden_size: int
intermediate_size: int
def setup(self):
h_size = self.hidden_size
i_size = self.intermediate_size
self.fc1 = nn.Dense(i_size, use_bias=False)
self.fc2 = nn.Dense(i_size, use_bias=False)
self.c_proj = nn.Dense(h_size, use_bias=False)
def __call__(self, xs):
xs = jax.nn.silu(self.fc1(xs)) * self.fc2(xs)
return self.c_proj(xs)
class Block(nn.Module):
cfg: Config
rotary_embeddings: RotaryEmbeddings
mask: jax.Array
def setup(self):
c = self.cfg
self.input_layernorm = RmsNorm(c.hidden_size, c.rms_norm_eps)
self.post_attention_layernorm = RmsNorm(c.hidden_size, c.rms_norm_eps)
self.mlp = MLP(c.hidden_size, c.intermediate_size)
self.self_attn = CausalSelfAttention(
c.hidden_size,
c.num_attention_heads,
c.use_flash_attn,
self.rotary_embeddings,
self.mask,
)
def __call__(self, xs):
xs = self.self_attn(self.input_layernorm(xs)) + xs
xs = self.mlp(self.post_attention_layernorm(xs)) + xs
return xs
class Llama(nn.Module):
cfg: Config
def setup(self):
c = self.cfg
self.wte = nn.Embed(
num_embeddings=c.vocab_size,
features=c.hidden_size,
)
rotary_embeddings = RotaryEmbeddings(c)
mask = jnp.log(jnp.tril(jnp.ones((SEQLEN, SEQLEN))))
layers = []
for _layer_idx in range(c.num_hidden_layers):
block = Block(c, rotary_embeddings, mask)
layers.append(block)
self.layers = layers
self.ln_f = RmsNorm(c.hidden_size)
self.lm_head = nn.Dense(c.vocab_size, use_bias=False)
def __call__(self, xs):
_b_sz, _seq_len = xs.shape
xs = self.wte(xs)
for layer in self.layers:
xs = layer(xs)
xs = self.ln_f(xs)
return self.lm_head(xs)
tokens = jnp.array([[i % 1000 for i in range(SEQLEN)]] * BSIZE)
def to_bfloat16(params):
def _to_bfloat16(param):
if isinstance(param, jnp.ndarray):
return param.astype(jnp.bfloat16)
else:
return param
return jax.tree_util.tree_map(_to_bfloat16, params)
rng = jax.random.PRNGKey(0)
model_fa = Llama(Config.v2_7b(True))
model = Llama(Config.v2_7b(False))
if USE_SAFETENSORS:
from huggingface_hub import hf_hub_download
rename_paths = {
"model.embed_tokens.weight": "params.wte.embedding",
"lm_head.weight": "params.lm_head.kernel",
"model.norm.weight": "params.ln_f.weight",
}
for layer_id in range(100):
rename_paths[f"model.layers.{layer_id}.input_layernorm.weight"] = (
f"params.layers_{layer_id}.input_layernorm.weight")
rename_paths[f"model.layers.{layer_id}.post_attention_layernorm.weight"] = (
f"params.layers_{layer_id}.post_attention_layernorm.weight")
rename_paths[f"model.layers.{layer_id}.self_attn.q_proj.weight"] = (
f"params.layers_{layer_id}.self_attn.q_proj.kernel")
rename_paths[f"model.layers.{layer_id}.self_attn.k_proj.weight"] = (
f"params.layers_{layer_id}.self_attn.k_proj.kernel")
rename_paths[f"model.layers.{layer_id}.self_attn.v_proj.weight"] = (
f"params.layers_{layer_id}.self_attn.v_proj.kernel")
rename_paths[f"model.layers.{layer_id}.self_attn.o_proj.weight"] = (
f"params.layers_{layer_id}.self_attn.o_proj.kernel")
rename_paths[f"model.layers.{layer_id}.mlp.down_proj.weight"] = (
f"params.layers_{layer_id}.mlp.c_proj.kernel")
rename_paths[f"model.layers.{layer_id}.mlp.gate_proj.weight"] = (
f"params.layers_{layer_id}.mlp.fc1.kernel")
rename_paths[f"model.layers.{layer_id}.mlp.up_proj.weight"] = (
f"params.layers_{layer_id}.mlp.fc2.kernel")
rename_paths[f"model.layers.{layer_id}.self_attn.rotary_emb.inv_freq"] = "params.TODO"
params = {}
filenames = [
hf_hub_download(
repo_id="meta-llama/Llama-2-7b-hf",
filename="model-00001-of-00002.safetensors",
),
hf_hub_download(
repo_id="meta-llama/Llama-2-7b-hf",
filename="model-00002-of-00002.safetensors",
),
]
for filename in filenames:
with safe_open(filename, framework="flax") as f_obj:
for orig_path in f_obj.keys():
current = params
path = rename_paths[orig_path]
path_split = path.split('.')
for i, k in enumerate(path_split):
if i == len(path_split) - 1:
tensor = f_obj.get_tensor(orig_path)
if k == "kernel": tensor = tensor.transpose((1, 0))
current[k] = tensor
break
if k not in current:
current[k] = {}
current = current[k]
else:
params = model.init(rng, tokens)
params = to_bfloat16(params)
forward = jax.jit(model.apply)
forward_fa = jax.jit(model_fa.apply)
ca = forward.lower(params, tokens).compile().cost_analysis()
flops = ca[0]["flops"]
print(flops/1e12)
flops = Config.v2_7b(False).flops(BSIZE, SEQLEN)
print(flops / 1e12)
logits = forward(params, tokens)
logits_fa = forward_fa(params, tokens)
print("FA", logits_fa.shape, logits_fa.dtype)
print(logits_fa)
print("NO FA", logits.shape, logits.dtype)
print(logits)
def bench(label, fwd, n_run=8, n_warmup=2, bwd=False):
if bwd:
def loss(params, xs):
return jnp.sum(fwd(params, xs))
f = jax.grad(loss, 0)
f = jax.jit(f)
else:
f = fwd
dts = []
for _ in range(n_warmup + n_run):
start_time = time.perf_counter()
res = f(params, tokens)
if bwd:
res = res[0]
res = res.block_until_ready()
res = float(res.sum())
dt = time.perf_counter() - start_time
dts.append(dt)
#print(dts)
dts = dts[n_warmup:]
dts = np.array(dts)
min_ms = np.min(dts) * 1000
max_ms = np.max(dts) * 1000
mean_ms = np.mean(dts) * 1000
std_ms = np.std(dts) * 1000
tflops = flops / np.mean(dts) / 1e12
print(f"{label:16} {mean_ms:5.2f}ms {tflops:.2f} TFLOPS (std {std_ms:.2f}ms, min {min_ms:.2f}ms, max {max_ms:.2f}ms)")
bench("fwd no-flash-attn ", forward)
bench("fwd with-flash-attn", forward_fa)
# Note that the backward step requires multiple H100 GPUs.
bench("bwd no-flash-attn ", forward, bwd=True)
bench("bwd with-flash-attn", forward_fa, bwd=True)