-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_for_shopee.py
268 lines (208 loc) · 10.6 KB
/
train_for_shopee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import division
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import random
import pprint
import time
import numpy as np
import pickle
import simplejson
import load_data
from keras import backend as K
from keras.optimizers import Adam
from keras.layers import Input
from keras.models import Model
from keras_frcnn import config, data_generators
from keras_frcnn import losses as losses
import keras_frcnn.roi_helpers as roi_helpers
from keras.utils import generic_utils
from pathlib import Path
# pass the settings from the command line, and persist them in the config object
frcnn_config = config.Config()
if frcnn_config.network == 'vgg':
frcnn_config.network = 'vgg'
from keras_frcnn import vgg as nn
elif frcnn_config.network == 'resnet50':
from keras_frcnn import resnet as nn
frcnn_config.network = 'resnet50'
else:
print('Not a valid model')
raise ValueError
# check if weight path was passed via command line
# read training data config
with open('train_dataset_config.json', 'rb') as dataset_config_file:
dataset_config = simplejson.load(dataset_config_file)
all_imgs, classes_count, class_mapping = load_data.load(dataset_config)
if 'bg' not in classes_count:
classes_count['bg'] = 0
class_mapping['bg'] = len(class_mapping)
frcnn_config.class_mapping = class_mapping
inv_map = {v: k for k, v in class_mapping.items()}
print('Training images per class:')
pprint.pprint(classes_count)
print('Num classes (including bg) = {}'.format(len(classes_count)))
config_output_filename = 'config.pickle'
with open(config_output_filename, 'wb') as config_f:
pickle.dump(frcnn_config, config_f)
print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(
config_output_filename))
random.shuffle(all_imgs)
num_imgs = len(all_imgs)
train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval']
val_imgs = [s for s in all_imgs if s['imageset'] == 'test']
print('Num train samples {}'.format(len(train_imgs)))
print('Num val samples {}'.format(len(val_imgs)))
data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, frcnn_config, nn.get_img_output_length,
K.image_dim_ordering(), mode='train')
data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, frcnn_config, nn.get_img_output_length,
K.image_dim_ordering(), mode='val')
if K.image_dim_ordering() == 'th':
input_shape_img = (3, None, None)
else:
input_shape_img = (None, None, 3)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(None, 4))
# define the base network (resnet here, can be VGG, Inception, etc)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(frcnn_config.anchor_box_scales) * len(frcnn_config.anchor_box_ratios)
rpn = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(shared_layers, roi_input, frcnn_config.num_rois, nb_classes=len(classes_count),
trainable=True)
model_rpn = Model(img_input, rpn[:2])
model_classifier = Model([img_input, roi_input], classifier)
# this is a model that holds both the RPN and the classifier, used to load/save weights for the models
model_all = Model([img_input, roi_input], rpn[:2] + classifier)
model_path = 'model_output/'+frcnn_config.model_path
pretrain_model_path = 'pretrain/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
try:
if Path(model_path).exists() is True:
model_rpn.load_weights(filepath=model_path, by_name=True)
model_classifier.load_weights(filepath=model_path, by_name=True)
print("Succesfully load model parameters")
elif Path(pretrain_model_path).exists() is True:
model_rpn.load_weights(filepath=pretrain_model_path, by_name=True)
model_classifier.load_weights(filepath=pretrain_model_path, by_name=True)
print("Succesfully load pretrained standard keras model parameters")
except:
print("No pre trained model")
optimizer = Adam(lr=1e-5)
optimizer_classifier = Adam(lr=1e-5)
model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)])
model_classifier.compile(optimizer=optimizer_classifier,
loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count) - 1)],
metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
model_all.compile(optimizer='sgd', loss='mae')
epoch_length = 1000
num_epochs = int(100)
iter_num = 0
losses = np.zeros((epoch_length, 5))
rpn_accuracy_rpn_monitor = []
rpn_accuracy_for_epoch = []
start_time = time.time()
best_loss = np.Inf
class_mapping_inv = {v: k for k, v in class_mapping.items()}
print('Starting training')
vis = True
for epoch_num in range(num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
while True:
try:
if len(rpn_accuracy_rpn_monitor) == epoch_length and frcnn_config.verbose:
mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor)
rpn_accuracy_rpn_monitor = []
print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(
mean_overlapping_bboxes, epoch_length))
if mean_overlapping_bboxes == 0:
print(
'RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.')
X, Y, img_data = next(data_gen_train)
loss_rpn = model_rpn.train_on_batch(X, Y)
P_rpn = model_rpn.predict_on_batch(X)
R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], frcnn_config, K.image_dim_ordering(), use_regr=True,
overlap_thresh=0.7,
max_boxes=300)
# note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, frcnn_config, class_mapping)
if X2 is None:
rpn_accuracy_rpn_monitor.append(0)
rpn_accuracy_for_epoch.append(0)
continue
neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg_samples) > 0:
neg_samples = neg_samples[0]
else:
neg_samples = []
if len(pos_samples) > 0:
pos_samples = pos_samples[0]
else:
pos_samples = []
rpn_accuracy_rpn_monitor.append(len(pos_samples))
rpn_accuracy_for_epoch.append((len(pos_samples)))
if frcnn_config.num_rois > 1:
if len(pos_samples) < frcnn_config.num_rois // 2:
selected_pos_samples = pos_samples.tolist()
else:
selected_pos_samples = np.random.choice(pos_samples, frcnn_config.num_rois // 2,
replace=False).tolist()
try:
selected_neg_samples = np.random.choice(neg_samples,
frcnn_config.num_rois - len(selected_pos_samples),
replace=False).tolist()
except:
selected_neg_samples = np.random.choice(neg_samples,
frcnn_config.num_rois - len(selected_pos_samples),
replace=True).tolist()
sel_samples = selected_pos_samples + selected_neg_samples
else:
# in the extreme case where num_rois = 1, we pick a random pos or neg sample
selected_pos_samples = pos_samples.tolist()
selected_neg_samples = neg_samples.tolist()
if np.random.randint(0, 2):
sel_samples = random.choice(neg_samples)
else:
sel_samples = random.choice(pos_samples)
loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]],
[Y1[:, sel_samples, :], Y2[:, sel_samples, :]])
losses[iter_num, 0] = loss_rpn[1]
losses[iter_num, 1] = loss_rpn[2]
losses[iter_num, 2] = loss_class[1]
losses[iter_num, 3] = loss_class[2]
losses[iter_num, 4] = loss_class[3]
iter_num += 1
progbar.update(iter_num,
[('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
('detector_cls', np.mean(losses[:iter_num, 2])),
('detector_regr', np.mean(losses[:iter_num, 3]))])
if iter_num == epoch_length:
loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
loss_class_cls = np.mean(losses[:, 2])
loss_class_regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])
mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
rpn_accuracy_for_epoch = []
if frcnn_config.verbose:
print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(
mean_overlapping_bboxes))
print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
print('Loss RPN classifier: {}'.format(loss_rpn_cls))
print('Loss RPN regression: {}'.format(loss_rpn_regr))
print('Loss Detector classifier: {}'.format(loss_class_cls))
print('Loss Detector regression: {}'.format(loss_class_regr))
print('Elapsed time: {}'.format(time.time() - start_time))
curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
iter_num = 0
start_time = time.time()
if curr_loss < best_loss:
if frcnn_config.verbose:
print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss))
best_loss = curr_loss
model_all.save_weights(model_path)
break
except Exception as e:
print('Exception: {}'.format(e))
continue
print('Training complete, exiting.')