forked from udacity/AIND-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_planning_graph.py
629 lines (524 loc) · 25.7 KB
/
my_planning_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
from aimacode.planning import Action
from aimacode.search import Problem
from aimacode.utils import expr
from lp_utils import decode_state
class PgNode():
''' Base class for planning graph nodes.
includes instance sets common to both types of nodes used in a planning graph
parents: the set of nodes in the previous level
children: the set of nodes in the subsequent level
mutex: the set of sibling nodes that are mutually exclusive with this node
'''
def __init__(self):
self.parents = set()
self.children = set()
self.mutex = set()
def is_mutex(self, other) -> bool:
''' Boolean test for mutual exclusion
:param other: PgNode
the other node to compare with
:return: bool
True if this node and the other are marked mutually exclusive (mutex)
'''
if other in self.mutex:
return True
return False
def show(self):
''' helper print for debugging shows counts of parents, children, siblings
:return:
print only
'''
print("{} parents".format(len(self.parents)))
print("{} children".format(len(self.children)))
print("{} mutex".format(len(self.mutex)))
class PgNode_s(PgNode):
'''
A planning graph node representing a state (literal fluent) from a planning
problem.
Args:
----------
symbol : str
A string representing a literal expression from a planning problem
domain.
is_pos : bool
Boolean flag indicating whether the literal expression is positive or
negative.
'''
def __init__(self, symbol: str, is_pos: bool):
''' S-level Planning Graph node constructor
:param symbol: expr
:param is_pos: bool
Instance variables calculated:
literal: expr
fluent in its literal form including negative operator if applicable
Instance variables inherited from PgNode:
parents: set of nodes connected to this node in previous A level; initially empty
children: set of nodes connected to this node in next A level; initially empty
mutex: set of sibling S-nodes that this node has mutual exclusion with; initially empty
'''
PgNode.__init__(self)
self.symbol = symbol
self.is_pos = is_pos
self.literal = expr(self.symbol)
if not self.is_pos:
self.literal = expr('~{}'.format(self.symbol))
def show(self):
'''helper print for debugging shows literal plus counts of parents, children, siblings
:return:
print only
'''
print("\n*** {}".format(self.literal))
PgNode.show(self)
def __eq__(self, other):
'''equality test for nodes - compares only the literal for equality
:param other: PgNode_s
:return: bool
'''
if isinstance(other, self.__class__):
return (self.symbol == other.symbol) \
and (self.is_pos == other.is_pos)
def __hash__(self):
return hash(self.symbol) ^ hash(self.is_pos)
class PgNode_a(PgNode):
'''A-type (action) Planning Graph node - inherited from PgNode
'''
def __init__(self, action: Action):
'''A-level Planning Graph node constructor
:param action: Action
a ground action, i.e. this action cannot contain any variables
Instance variables calculated:
An A-level will always have an S-level as its parent and an S-level as its child.
The preconditions and effects will become the parents and children of the A-level node
However, when this node is created, it is not yet connected to the graph
prenodes: set of *possible* parent S-nodes
effnodes: set of *possible* child S-nodes
is_persistent: bool True if this is a persistence action, i.e. a no-op action
Instance variables inherited from PgNode:
parents: set of nodes connected to this node in previous S level; initially empty
children: set of nodes connected to this node in next S level; initially empty
mutex: set of sibling A-nodes that this node has mutual exclusion with; initially empty
'''
PgNode.__init__(self)
self.action = action
self.prenodes = self.precond_s_nodes()
self.effnodes = self.effect_s_nodes()
self.is_persistent = False
if self.prenodes == self.effnodes:
self.is_persistent = True
def show(self):
'''helper print for debugging shows action plus counts of parents, children, siblings
:return:
print only
'''
print("\n*** {}{}".format(self.action.name, self.action.args))
PgNode.show(self)
def precond_s_nodes(self):
'''precondition literals as S-nodes (represents possible parents for this node).
It is computationally expensive to call this function; it is only called by the
class constructor to populate the `prenodes` attribute.
:return: set of PgNode_s
'''
nodes = set()
for p in self.action.precond_pos:
n = PgNode_s(p, True)
nodes.add(n)
for p in self.action.precond_neg:
n = PgNode_s(p, False)
nodes.add(n)
return nodes
def effect_s_nodes(self):
'''effect literals as S-nodes (represents possible children for this node).
It is computationally expensive to call this function; it is only called by the
class constructor to populate the `effnodes` attribute.
:return: set of PgNode_s
'''
nodes = set()
for e in self.action.effect_add:
n = PgNode_s(e, True)
nodes.add(n)
for e in self.action.effect_rem:
n = PgNode_s(e, False)
nodes.add(n)
return nodes
def __eq__(self, other):
'''equality test for nodes - compares only the action name for equality
:param other: PgNode_a
:return: bool
'''
if isinstance(other, self.__class__):
return (self.action.name == other.action.name) \
and (self.action.args == other.action.args)
def __hash__(self):
return hash(self.action.name) ^ hash(self.action.args)
def mutexify(node1: PgNode, node2: PgNode):
''' adds sibling nodes to each other's mutual exclusion (mutex) set. These should be sibling nodes!
:param node1: PgNode (or inherited PgNode_a, PgNode_s types)
:param node2: PgNode (or inherited PgNode_a, PgNode_s types)
:return:
node mutex sets modified
'''
if type(node1) != type(node2):
raise TypeError('Attempted to mutex two nodes of different types')
node1.mutex.add(node2)
node2.mutex.add(node1)
class PlanningGraph():
'''
A planning graph as described in chapter 10 of the AIMA text. The planning
graph can be used to reason about
'''
def __init__(self, problem: Problem, state: str, serial_planning=True):
'''
:param problem: PlanningProblem (or subclass such as AirCargoProblem or HaveCakeProblem)
:param state: str (will be in form TFTTFF... representing fluent states)
:param serial_planning: bool (whether or not to assume that only one action can occur at a time)
Instance variable calculated:
fs: FluentState
the state represented as positive and negative fluent literal lists
all_actions: list of the PlanningProblem valid ground actions combined with calculated no-op actions
s_levels: list of sets of PgNode_s, where each set in the list represents an S-level in the planning graph
a_levels: list of sets of PgNode_a, where each set in the list represents an A-level in the planning graph
'''
self.problem = problem
self.fs = decode_state(state, problem.state_map)
self.serial = serial_planning
self.all_actions = self.problem.actions_list + self.noop_actions(self.problem.state_map)
self.s_levels = []
self.a_levels = []
self.create_graph()
def noop_actions(self, literal_list):
'''create persistent action for each possible fluent
"No-Op" actions are virtual actions (i.e., actions that only exist in
the planning graph, not in the planning problem domain) that operate
on each fluent (literal expression) from the problem domain. No op
actions "pass through" the literal expressions from one level of the
planning graph to the next.
The no-op action list requires both a positive and a negative action
for each literal expression. Positive no-op actions require the literal
as a positive precondition and add the literal expression as an effect
in the output, and negative no-op actions require the literal as a
negative precondition and remove the literal expression as an effect in
the output.
This function should only be called by the class constructor.
:param literal_list:
:return: list of Action
'''
action_list = []
for fluent in literal_list:
act1 = Action(expr("Noop_pos({})".format(fluent)), ([fluent], []), ([fluent], []))
action_list.append(act1)
act2 = Action(expr("Noop_neg({})".format(fluent)), ([], [fluent]), ([], [fluent]))
action_list.append(act2)
return action_list
def create_graph(self):
''' build a Planning Graph as described in Russell-Norvig 3rd Ed 10.3 or 2nd Ed 11.4
The S0 initial level has been implemented for you. It has no parents and includes all of
the literal fluents that are part of the initial state passed to the constructor. At the start
of a problem planning search, this will be the same as the initial state of the problem. However,
the planning graph can be built from any state in the Planning Problem
This function should only be called by the class constructor.
:return:
builds the graph by filling s_levels[] and a_levels[] lists with node sets for each level
'''
# the graph should only be built during class construction
if (len(self.s_levels) != 0) or (len(self.a_levels) != 0):
raise Exception(
'Planning Graph already created; construct a new planning graph for each new state in the planning sequence')
# initialize S0 to literals in initial state provided.
leveled = False
level = 0
self.s_levels.append(set()) # S0 set of s_nodes - empty to start
# for each fluent in the initial state, add the correct literal PgNode_s
for literal in self.fs.pos:
self.s_levels[level].add(PgNode_s(literal, True))
for literal in self.fs.neg:
self.s_levels[level].add(PgNode_s(literal, False))
# no mutexes at the first level
# continue to build the graph alternating A, S levels until last two S levels contain the same literals,
# i.e. until it is "leveled"
while not leveled:
self.add_action_level(level)
self.update_a_mutex(self.a_levels[level])
level += 1
self.add_literal_level(level)
self.update_s_mutex(self.s_levels[level])
if self.s_levels[level] == self.s_levels[level - 1]:
leveled = True
def add_action_level(self, level):
''' add an A (action) level to the Planning Graph
:param level: int
the level number alternates S0, A0, S1, A1, S2, .... etc the level number is also used as the
index for the node set lists self.a_levels[] and self.s_levels[]
:return:
adds A nodes to the current level in self.a_levels[level]
'''
# TODO [DONE] add action A level to the planning graph as described in the Russell-Norvig text
# 1. determine what actions to add and create those PgNode_a objects
# 2. connect the nodes to the previous S literal level
# for example, the A0 level will iterate through all possible actions for the problem and add a PgNode_a to a_levels[0]
# set iff all prerequisite literals for the action hold in S0. This can be accomplished by testing
# to see if a proposed PgNode_a has prenodes that are a subset of the previous S level. Once an
# action node is added, it MUST be connected to the S node instances in the appropriate s_level set.
# New level set of a_nodes - empty to start
self.a_levels.append(set())
# Get the current s level
current_s_level_nodes = self.s_levels[level]
# Check all actions.
for one_action in self.all_actions:
# 1. determine what actions to add and create those PgNode_a objects
current_action_pg_node_a = PgNode_a(one_action)
# Get the precondition S nodes.
preconditions_of_pg_node_s = current_action_pg_node_a.prenodes
# If all the precondition S nodes are in the current s_level,
# then, we can say it can be added to the current a_level
if preconditions_of_pg_node_s.issubset(current_s_level_nodes):
# Add into the current a_level.
self.a_levels[level].add(current_action_pg_node_a)
# 2. connect the nodes to the previous S literal level
# From the definition, the preconditions
# will become the parents of the A-level node.
current_action_pg_node_a.parents = preconditions_of_pg_node_s
# From the definition, the effects
# will become the children of the A-level node.
current_action_pg_node_a.children = current_action_pg_node_a.effnodes
# There is no return value.
def add_literal_level(self, level):
''' add an S (literal) level to the Planning Graph
:param level: int
the level number alternates S0, A0, S1, A1, S2, .... etc the level number is also used as the
index for the node set lists self.a_levels[] and self.s_levels[]
:return:
adds S nodes to the current level in self.s_levels[level]
'''
# TODO [DONE] add literal S level to the planning graph as described in the Russell-Norvig text
# 1. determine what literals to add
# 2. connect the nodes
# for example, every A node in the previous level has a list of S nodes in effnodes that represent the effect
# produced by the action. These literals will all be part of the new S level. Since we are working with sets, they
# may be "added" to the set without fear of duplication. However, it is important to then correctly create and connect
# all of the new S nodes as children of all the A nodes that could produce them, and likewise add the A nodes to the
# parent sets of the S nodes
# New level set of s_nodes - empty to start
self.s_levels.append(set())
# Check all actions of previous level.
for previous_level_action_node in self.a_levels[level - 1]:
# Check all eff nodes of previous level action node.
for one_eff_node in previous_level_action_node.effnodes:
# 1. determine what literals to add
# Add into the current s_level.
self.s_levels[level].add(one_eff_node)
# 2. connect the nodes
# Add previous level action node into current eff node as a parent.
one_eff_node.parents.add(previous_level_action_node)
# Add current eff node into previous level action node as a child.
previous_level_action_node.children.add(one_eff_node)
# There is no return value.
def update_a_mutex(self, nodeset):
''' Determine and update sibling mutual exclusion for A-level nodes
Mutex action tests section from 3rd Ed. 10.3 or 2nd Ed. 11.4
A mutex relation holds between two actions a given level
if the planning graph is a serial planning graph and the pair are nonpersistence actions
or if any of the three conditions hold between the pair:
Inconsistent Effects
Interference
Competing needs
:param nodeset: set of PgNode_a (siblings in the same level)
:return:
mutex set in each PgNode_a in the set is appropriately updated
'''
nodelist = list(nodeset)
for i, n1 in enumerate(nodelist[:-1]):
for n2 in nodelist[i + 1:]:
if (self.serialize_actions(n1, n2) or
self.inconsistent_effects_mutex(n1, n2) or
self.interference_mutex(n1, n2) or
self.competing_needs_mutex(n1, n2)):
mutexify(n1, n2)
def serialize_actions(self, node_a1: PgNode_a, node_a2: PgNode_a) -> bool:
'''
Test a pair of actions for mutual exclusion, returning True if the
planning graph is serial, and if either action is persistent; otherwise
return False. Two serial actions are mutually exclusive if they are
both non-persistent.
:param node_a1: PgNode_a
:param node_a2: PgNode_a
:return: bool
'''
#
if not self.serial:
return False
if node_a1.is_persistent or node_a2.is_persistent:
return False
return True
def inconsistent_effects_mutex(self, node_a1: PgNode_a, node_a2: PgNode_a) -> bool:
'''
Test a pair of actions for inconsistent effects, returning True if
one action negates an effect of the other, and False otherwise.
HINT: The Action instance associated with an action node is accessible
through the PgNode_a.action attribute. See the Action class
documentation for details on accessing the effects and preconditions of
an action.
:param node_a1: PgNode_a
:param node_a2: PgNode_a
:return: bool
'''
# TODO [DONE] test for Inconsistent Effects between nodes
# Return True, if one action negates an effect of the other.
# There are 4 combinations.
# 1) node_a1's positive effect in node_a2's negative effect.
for one_positive_effect in node_a1.action.effect_add:
if one_positive_effect in node_a2.action.effect_rem:
return True
# 2) node_a1's negative effect in node_a2's positive effect.
for one_negative_effect in node_a1.action.effect_rem:
if one_negative_effect in node_a2.action.effect_add:
return True
# 3) node_a2's positive effect in node_a1's negative effect.
for one_positive_effect in node_a2.action.effect_add:
if one_positive_effect in node_a1.action.effect_rem:
return True
# 4) node_a2's negative effect in node_a1's positive effect.
for one_negative_effect in node_a2.action.effect_rem:
if one_negative_effect in node_a1.action.effect_add:
return True
# Return False, otherwise.
return False
def interference_mutex(self, node_a1: PgNode_a, node_a2: PgNode_a) -> bool:
'''
Test a pair of actions for mutual exclusion, returning True if the
effect of one action is the negation of a precondition of the other.
HINT: The Action instance associated with an action node is accessible
through the PgNode_a.action attribute. See the Action class
documentation for details on accessing the effects and preconditions of
an action.
:param node_a1: PgNode_a
:param node_a2: PgNode_a
:return: bool
'''
# TODO [DONE] test for Interference between nodes
# Return True,
# if the effect of one action is the negation of a precondition of the other.
# There are 4 combinations.
# 1) node_a1's positive effect in node_a2's negative preconditions.
for one_positive_effect in node_a1.action.effect_add:
if one_positive_effect in node_a2.action.precond_neg:
return True
# 2) node_a1's negative effect in node_a2's positive preconditions.
for one_negative_effect in node_a1.action.effect_rem:
if one_negative_effect in node_a2.action.precond_pos:
return True
# 3) node_a2's positive effect in node_a1's negative preconditions.
for one_positive_effect in node_a2.action.effect_add:
if one_positive_effect in node_a1.action.precond_neg:
return True
# 4) node_a2's negative effect in node_a1's positive effect.
for one_negative_effect in node_a2.action.effect_rem:
if one_negative_effect in node_a1.action.precond_pos:
return True
# Return False, otherwise.
return False
def competing_needs_mutex(self, node_a1: PgNode_a, node_a2: PgNode_a) -> bool:
'''
Test a pair of actions for mutual exclusion, returning True if one of
the precondition of one action is mutex with a precondition of the
other action.
:param node_a1: PgNode_a
:param node_a2: PgNode_a
:return: bool
'''
# TODO [DONE] test for Competing Needs between nodes
# Return True,
# if one of the precondition of one action is mutex
# with a precondition of the other action
for one_parenet_of_node_a1 in node_a1.parents:
for one_parenet_of_node_a2 in node_a2.parents:
if one_parenet_of_node_a1.is_mutex(one_parenet_of_node_a2):
return True
return False
def update_s_mutex(self, nodeset: set):
''' Determine and update sibling mutual exclusion for S-level nodes
Mutex action tests section from 3rd Ed. 10.3 or 2nd Ed. 11.4
A mutex relation holds between literals at a given level
if either of the two conditions hold between the pair:
Negation
Inconsistent support
:param nodeset: set of PgNode_a (siblings in the same level)
:return:
mutex set in each PgNode_a in the set is appropriately updated
'''
nodelist = list(nodeset)
for i, n1 in enumerate(nodelist[:-1]):
for n2 in nodelist[i + 1:]:
if self.negation_mutex(n1, n2) or self.inconsistent_support_mutex(n1, n2):
mutexify(n1, n2)
def negation_mutex(self, node_s1: PgNode_s, node_s2: PgNode_s) -> bool:
'''
Test a pair of state literals for mutual exclusion, returning True if
one node is the negation of the other, and False otherwise.
HINT: Look at the PgNode_s.__eq__ defines the notion of equivalence for
literal expression nodes, and the class tracks whether the literal is
positive or negative.
:param node_s1: PgNode_s
:param node_s2: PgNode_s
:return: bool
'''
# TODO [DONE] test for negation between nodes
# Return True,
# if one node is the negation of the other
if node_s1.symbol == node_s2.symbol:
if node_s1.is_pos != node_s2.is_pos:
return True
# Return False, otherwise
return False
def inconsistent_support_mutex(self, node_s1: PgNode_s, node_s2: PgNode_s):
'''
Test a pair of state literals for mutual exclusion, returning True if
there are no actions that could achieve the two literals at the same
time, and False otherwise. In other words, the two literal nodes are
mutex if all of the actions that could achieve the first literal node
are pairwise mutually exclusive with all of the actions that could
achieve the second literal node.
HINT: The PgNode.is_mutex method can be used to test whether two nodes
are mutually exclusive.
:param node_s1: PgNode_s
:param node_s2: PgNode_s
:return: bool
'''
# TODO [DONE] test for Inconsistent Support between nodes
# Return True,
# if there are no actions
# that could achieve the two literals at the sametime
# Return False, otherwise.
is_no_actions = True
for one_parenet_of_node_s1 in node_s1.parents:
for one_parenet_of_node_s2 in node_s2.parents:
if not one_parenet_of_node_s1.is_mutex(one_parenet_of_node_s2):
is_no_actions = False
return is_no_actions
def h_levelsum(self) -> int:
'''The sum of the level costs of the individual goals (admissible if goals independent)
:return: int
'''
level_sum = 0
# TODO [DONE] implement
# for each goal in the problem, determine the level cost, then add them together
# Get the values needed.
all_goals = self.problem.goal
length_of_s_levels = len(self.s_levels)
# Loop all goal states of current problem.
for current_goal in all_goals:
is_current_goal_state_found = False
# Explorer all the levels.
for level in range(length_of_s_levels):
all_states_of_current_level = self.s_levels[level]
# Explorer all the states of current level.
for current_state in all_states_of_current_level:
if current_state.literal == current_goal:
# This state is the one of goals!
level_sum += level
is_current_goal_state_found = True
break
# If current goal state is already found,
# then break current loop and go next goal.
if is_current_goal_state_found:
break
return level_sum