-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpair_testing.py
executable file
·67 lines (59 loc) · 1.93 KB
/
pair_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from tensorflow.keras.preprocessing import text, sequence
from tensorflow.keras.preprocessing.text import Tokenizer
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model
import numpy as np
import os, sys
from pandas.core.frame import DataFrame
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
max_length = 512
seqs_sys = 'ARNDCQEGHILKMFPSTWYV-'
def FindMax(np_arr, lens):
list_sys = [0.22, 0.17, 0.21, 0.4]
max = 0
max_idx = 0
for i in range(len(np_arr)):
if (np_arr[i] / lens) / list_sys[i] > max:
max_idx = i
max = (np_arr[i] / lens) / list_sys[i]
return max_idx
def SingleTest(seqs, model):
df = DataFrame({'Seqs': seqs})
df.reset_index()
seqs_ = df.Seqs.values
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts(seqs_sys)
X = tokenizer.texts_to_sequences(seqs_)
X = sequence.pad_sequences(X, maxlen=max_length)
np_list = np.argmax(model.predict(X), axis=1)
return FindMax(np.bincount(np_list), len(np_list))
def SingFileTest(family_file, model):
seqs = []
tmp_val = ""
pairs = []
filein = open(family_file, 'r')
file_con = filein.read().splitlines()
filein.close()
for line in file_con:
if len(tmp_val) > 0 and '>' in line:
seqs.append(tmp_val)
tmp_val = ""
elif '>' not in line:
tmp_val += line
if len(tmp_val) > 0:
seqs.append(tmp_val)
for i in range(len(seqs) - 1):
for j in range(i, len(seqs)):
pairs.append(seqs[i] + '-' + seqs[j])
return SingleTest(pairs, model)
def BenchTest(bench, model):
ret = []
files = os.listdir(bench + '/in')
for file in files:
if file[0] != '.':
ret.append([bench + '.' + file, SingFileTest(bench + '/in/' + file, model)])
return ret
if __name__ == "__main__":
bench = sys.argv[1]
ret = BenchTest(bench, model)
print(ret)