This repository has been archived by the owner on Sep 20, 2022. It is now read-only.
forked from etarho/kxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_optim.py
473 lines (387 loc) · 14.6 KB
/
train_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.6.0
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# +
import argparse
import os
import tempfile
import mlflow
import mlflow.pytorch
import numpy as np
import optuna
import pandas as pd
import torch
import torch.optim as optim
import torch.utils.data as data
import yaml
from dlkit import models
from dlkit.criterions import Criterion
from estimator import Estimator
from PIL import Image
from preprocessing.dataloader import LaparoDataset, NpLaparoDataset
from preprocessing.transformer import ScaleTransformer
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from tqdm import tqdm, trange
from utils import geometry, modules
# -
def is_notebook():
"""Determine wheather is the environment Jupyter Notebook"""
if "get_ipython" not in globals():
# Python shell
return False
env_name = get_ipython().__class__.__name__
if env_name == "TerminalInteractiveShell":
# IPython shell
return False
# Jupyter Notebook
return True
def config():
parser = argparse.ArgumentParser()
parser.add_argument("ds_num", type=int, help="dataset number")
parser.add_argument("model", help="model name")
parser.add_argument("-b", "--batch-size", default=16, type=int, help="batch size")
parser.add_argument("-e", "--n_epochs", default=100, type=int, help="epochs")
parser.add_argument("-d", "--device", default=0, type=int)
parser.add_argument("-try", "--n_trials", default=3, type=int)
parser.add_argument(
"--pretrained",
action="store_true",
help="Use the model that is pretrained by myself",
)
parser.add_argument("-w", "--n_workers", default=4, type=int)
parser.add_argument("-exp", "--exp_name", default="Debug")
parser.add_argument("--a1", default=1.0, type=float, help="Coefficient of l_2d")
parser.add_argument("--a2", default=1.0, type=float, help="Coefficient of l_orient")
parser.add_argument("--a3", default=1.0, type=float, help="Coefficient of l_phi")
parser.add_argument("--a4", default=1.0, type=float, help="Coefficient of l_gamma")
parser.add_argument('--optuna', action='store_true', help='Hyperparameter optimization [False]')
return parser
if is_notebook():
cfg = config().parse_args(
args=[
"24",
"res50",
"-b",
"16",
"-e",
"20",
"--n_trials",
"20",
# "-exp",
# "Pose Estimation",
]
)
else:
cfg = config().parse_args()
writer = None
class Trainer:
def __init__(self, model, exp_name=cfg.exp_name):
self.device = torch.device(
"cuda:{}".format(cfg.device) if torch.cuda.is_available() else "cpu"
)
self.params = ["trans3d", "trans2d", "orient", "roll", "joint"]
self.scaler = ScaleTransformer(cfg.ds_num)
self.model = model
self.model.to(self.device)
self.loss_weights = {
"trans3d": 1.0,
"trans2d": cfg.a1,
"orient": cfg.a2,
"roll": cfg.a3,
"joint": cfg.a4,
}
# TODO: Read from model_config.yaml
# summary(self.model, (3, 224, 224))
torch.backends.cudnn.benchmark = True
mlflow.set_experiment(cfg.exp_name)
def run(self, trial):
"""
Return:
Best epoch loss through one trial
Execute learning with fixed hyper parameters.
"""
min_loss = np.Inf
with mlflow.start_run():
for key, value in vars(cfg).items():
mlflow.log_param(key, value)
lr = self._get_lr(trial)
optimizer = optim.Adam(self.model.parameters(), lr=lr)
criterions = self._get_criterion(trial)
with trange(cfg.n_epochs) as epoch_bar:
for epoch in epoch_bar:
for phase in ["train", "val"]:
epoch_bar.set_description(
"[{}] Epoch {}".format(phase.title().rjust(5), epoch + 1)
)
epoch_loss = self._train(epoch, phase, criterions, optimizer)
epoch_bar.set_postfix(loss=epoch_loss)
# Log weights when the minimum loss is updated
if phase == "val" and epoch_loss < min_loss:
min_loss = epoch_loss
mlflow.pytorch.log_model(self.model, "best_model")
mlflow.log_artifacts(output_dir, artifact_path="best_model")
mlflow.log_metric("best epoch", epoch + 1)
# Save weights
torch.save(model.state_dict(), output_dir + "/weight.pth")
mlflow.pytorch.log_model(self.model, "model")
self._test()
mlflow.log_artifacts(output_dir, artifact_path="model")
return min_loss
def _train(self, epoch, phase, criterions, optimizer=None):
if phase == "train":
self.model.train()
else:
self.model.eval()
sum_train_loss = torch.zeros(6).to(self.device)
sum_val_loss = torch.zeros(6).to(self.device)
sum_loss_dict = {"train": sum_train_loss, "val": sum_val_loss}
epoch_loss_dict = {"train": None, "val": None}
for inputs, targets in dataloader_dict[phase]:
inputs, targets = inputs.to(self.device), targets.to(self.device)
with torch.set_grad_enabled(phase == "train"):
optimizer.zero_grad()
outputs = self.model(inputs)
pred = self._split_param(outputs)
label = self._split_param(targets)
loss = 0.0
for param, criterion in criterions.items():
param_loss = criterion(pred[param], label[param])
loss += self.loss_weights[param] * param_loss
sum_loss_dict[phase][self.params.index(param) + 1] += param_loss
sum_loss_dict[phase][0] += loss
errors = calc_errors(pred, label, self.scaler)
# Update weights
if phase == "train":
loss.backward()
optimizer.step()
# Calculate the loss through one epoch
epoch_loss_dict[phase] = sum_loss_dict[
phase
].detach().cpu().numpy().copy() / len(dataloader_dict[phase])
logparam_list = ["all", *self.params]
for i, param_name in enumerate(logparam_list):
self._log_scalar(
"Loss_{}/{}".format(param_name.title(), phase),
epoch_loss_dict[phase][i],
epoch,
)
return epoch_loss_dict[phase][0]
def _test(self):
print("\n\nStart Testing...\n")
run_uri = mlflow.get_artifact_uri() + "/model"
estimator = Estimator(
mode=2, ds_num=cfg.ds_num, run_uri=run_uri, transform=transform
)
target_df = val_ds.dataframe.drop(columns=["alpha", "beta"])
target_df["z"] = -target_df["z"]
value_list = []
for i in trange(len(target_df)):
im_path = "./Database/ds_{:03d}/val/img_{:05d}.jpg".format(
cfg.ds_num, i + 1
)
im = Image.open(im_path)
value = estimator(im)
value_list.append(value)
columns = ["x", "y", "z", "x_2d", "y_2d", "nx", "ny", "nz", "gamma", "phi"]
pred_df = pd.DataFrame(value_list, columns=columns)
pred_df.to_csv(output_dir + "/pred_{:03d}.csv".format(cfg.ds_num))
# error_df = (target_df - pred_df).rename(columns=lambda x: "e_" + x)
# result = pred_df.join(error_df)
# save_path = mlflow.get_artifact_uri()
# analyzer(result, target_df, save_path, conf.ds_num, resize_shape)
def _get_lr(self, trial):
lr = trial.suggest_loguniform("lr", 1e-5, 1e-1)
mlflow.log_param("lr", lr)
return lr
def _get_criterion(self, trial):
trans3d = ["mae", "mse", "huber"]
trans2d = ["mae", "mse", "huber"]
orient = ["mae", "mse", "huber", "cos"]
roll = ["mae", "mse", "huber"]
joint = ["mae", "mse", "huber"]
criterion_list = [trans3d, trans2d, orient, roll, joint]
criterions = dict()
for param, criterion in zip(self.params, criterion_list):
c = trial.suggest_categorical(param, criterion)
mlflow.log_param(param, c)
criterions[param] = Criterion(mode=c)
return criterions
def _split_param(self, values):
position = self.scaler.inverse_transform(values.detach().cpu())[:, :3]
value_dict = {
"trans3d": values[:, :3],
"trans2d": geometry.project_onto_plane( # TODO: Read from config
torch.from_numpy(position),
a_ratio=self.scaler.aspect,
fov=self.scaler.fov,
is_batch=True,
).to(self.device),
"orient": values[:, 3:6],
"roll": values[:, 6:8],
"joint": values[:, 8].view(-1, 1),
}
return value_dict
def _log_scalar(self, name, value, step):
"""
Log a scalar value to both MLflow and TensorBoard
"""
writer.add_scalar(name, value, step)
mlflow.log_metric(name, value, step)
# +
def calc_errors(pred, label, rescaler):
"""
Return:
[x, y, z, x_2d, y_2d, nx, ny, nz, gamma_s, gamma_c, phi, trans3d, trans2d, orient, roll, joint]
"""
# Denormalize outputs
transformed_pred = rescaler.inverse_transform(pred, size=resize_shape)
transformed_label = rescaler.inverse_transform(label, size=resize_shape)
# print("\n-------------\n", transformed_pred, "\n+++++++++++++\n", transformed_label)
trans2d_pred = geometry.project_onto_plane(
transformed_pred[:, :3],
a_ratio=rescaler.aspect,
fov=rescaler.fov,
is_batch=True,
)
trans2d_label = geometry.project_onto_plane(
transformed_label[:, :3],
a_ratio=rescaler.aspect,
fov=rescaler.fov,
is_batch=True,
)
roll_pred = geometry.sc2deg(transformed_pred[:, 6], transformed_pred[:, 7])
roll_label = geometry.sc2deg(transformed_label[:, 6], transformed_label[:, 7])
# Calculate errors
transformed_error = transformed_pred - transformed_label
trans3d_error = transformed_error[:, :3].norm(dim=1, keepdim=True).mean()
trans2d_error = (
(trans2d_pred - trans2d_label).norm(dim=1, keepdim=True) * resize_shape[0]
).mean()
similarity = torch.nn.CosineSimilarity(dim=1)
orient_error = (
torch.rad2deg(similarity(transformed_pred[:, 3:6], transformed_label[:, 3:6]))
.abs()
.mean()
)
roll_error = geometry.scale180(roll_pred - roll_label).mean()
joint_error = geometry.scale180(transformed_error[:, 8]).mean()
# print(
# "error\n",
# transformed_error,
# "\nem\n",
# transformed_error.mean(dim=0),
# "\n3\n",
# trans3d_error,
# "\n2\n",
# trans2d_error,
# "\no\n",
# orient_error,
# "\nr\n",
# roll_error,
# "\nj\n",
# joint_error,
# )
# -
def get_model_config():
with open("./dlkit/model_config.yaml") as m_config:
m_cfg = yaml.load(m_config)
m = m_cfg[cfg.model]["name"]
input_size = m_cfg[cfg.model]["input_size"]
return m, input_size
# +
# TODO: Read from model_config.yaml and ds_config.yaml
with open("./Database/ds_{:03d}/ds_config.yaml".format(cfg.ds_num)) as f:
ds_config = yaml.load(f, Loader=yaml.SafeLoader)
with open("./dlkit/model_config.yaml") as f:
model_config = yaml.load(f, Loader=yaml.SafeLoader)
resize_shape = model_config[cfg.model]["input_size"]
if cfg.model == "res50":
cmean = [0.485, 0.456, 0.406]
cstd = [0.229, 0.224, 0.225]
model = models.ResNet50()
elif cfg.model == "res50_448":
cmean = ds_config["color"]["mean"]
cstd = ds_config["color"]["std"]
model = models.ResNet50_448()
transform = Compose([Resize(resize_shape), ToTensor(), Normalize(cmean, cstd)])
# -
# ## Setting a dataset and dataeset loader
train_ds = NpLaparoDataset(phase="train", ds_num=cfg.ds_num, input_size=resize_shape)
val_ds = NpLaparoDataset(phase="val", ds_num=cfg.ds_num, input_size=resize_shape)
# +
# train_ds = LaparoDataset(phase="train", transform=transform, ds_num=cfg.ds_num)
# val_ds = LaparoDataset(phase="val", transform=transform, ds_num=cfg.ds_num)
# -
train_loader = data.DataLoader(
train_ds,
batch_size=cfg.batch_size,
shuffle=True,
drop_last=True,
num_workers=cfg.n_workers,
)
val_loader = data.DataLoader(
val_ds,
batch_size=cfg.batch_size,
shuffle=False,
drop_last=True,
num_workers=cfg.n_workers,
)
dataloader_dict = {"train": train_loader, "val": val_loader}
if __name__ == "__main__":
# Train a model
print(
"\nNow Starting...\n\n"
"\n========================\n"
" HYPER PARAMETERS \n"
"------------------------\n"
" Device >> {}\n"
" Dataset >> {}\n"
" Model >> {}\n"
" Batch size >> {}\n"
" Epochs >> {}\n"
"========================\n".format(
cfg.device, cfg.ds_num, cfg.model.title(), cfg.batch_size, cfg.n_epochs
)
)
with tempfile.TemporaryDirectory() as tmp_dir:
output_dir = tmp_dir + "/logs"
writer = SummaryWriter(output_dir)
# Load weights when using a pre-trained model
if cfg.pretrained:
exp_dir = input("Experiment Directory: ")
weight = torch.load(
os.getcwd() + "/" + exp_dir + "/artifacts/models/weight.pth"
)
model.load_state_dict(weight)
trainer = Trainer(model=model)
while True:
try:
study = optuna.create_study(
study_name=cfg.exp_name + "/" + cfg.model,
storage="sqlite:///mlruns/{}_{}.db".format(cfg.exp_name, cfg.model),
load_if_exists=True,
)
study.optimize(trainer.run, n_trials=cfg.n_trials)
break
except RuntimeError:
break
message = """
========================
TRANING FINISHED
========================
"""
modules.line_notify(message)
print(message)