-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
60 lines (40 loc) · 1.91 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# syntR <img src="https://raw.githubusercontent.com/ksamuk/syntR/master/inst/figures/logo.png" align="right" width="120" height="135" />
syntR is an R package for the reproducible identification of synteny blocks and chromosomal rearrangments via comparison of two genetic maps. syntR implements an error-aware clustering algorithm specifically designed for the highly linear structure of comparative genetic map data. syntR can be used to identify synteny blocks using any type of ordered genetic markers.
### Documentation
[The documentation and tutorial for syntR can be found here](https://ksamuk.github.io/syntR/index.html)
### Installation
You can install syntR from Github with:
```{r, eval = FALSE}
install.packages("devtools")
devtools::install_github("ksamuk/syntR")
```
### Example
Find synteny blocks shared between *Helianthus petiolaris* and *Helianthus annus* (provided as example data):
```{r, eval = FALSE}
# load the syntR library
library("syntR")
# load data
data(ann_pet_map)
# convert data to a single ordered scale
map_list <- make_one_map(ann_pet_map)
# find synteny blocks
synt_blocks <- find_synteny_blocks(map_list, max_clust_range = 2, max_nn_dist = 10, plots = TRUE)
# print the resulting synteny blocks dataframe
synt_blocks[[2]]
```
### Authors
[Katherine Ostevik](http://www.kateostevik.com/) and [Kieran Samuk](https://ksamuk.github.io/).
### See Also
[GRIMM](http://grimm.ucsd.edu/GRIMM/) - A tool for analyzing rearrangements in pairs of genomes, including unichromosomal and multichromosomal genomes, and signed and unsigned data.
[Flagel et al. 2018](https://www.biorxiv.org/content/early/2018/05/26/330159) - An example of a more formal model-based approach to a similar problem.