forked from 0xPlaygrounds/rig
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculator_chatbot.rs
283 lines (240 loc) · 8.2 KB
/
calculator_chatbot.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use anyhow::Result;
use rig::{
cli_chatbot::cli_chatbot,
completion::ToolDefinition,
embeddings::EmbeddingsBuilder,
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
tool::{Tool, ToolEmbedding, ToolSet},
vector_store::in_memory_store::InMemoryVectorStore,
};
use serde::{Deserialize, Serialize};
use serde_json::json;
use std::env;
#[derive(Deserialize)]
struct OperationArgs {
x: i32,
y: i32,
}
#[derive(Debug, thiserror::Error)]
#[error("Math error")]
struct MathError;
#[derive(Debug, thiserror::Error)]
#[error("Init error")]
struct InitError;
#[derive(Deserialize, Serialize)]
struct Add;
impl Tool for Add {
const NAME: &'static str = "add";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "add",
"description": "Add x and y together",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The first number to add"
},
"y": {
"type": "number",
"description": "The second number to add"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x + args.y;
Ok(result)
}
}
impl ToolEmbedding for Add {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Add)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Add x and y together".into()]
}
fn context(&self) -> Self::Context {}
}
#[derive(Deserialize, Serialize)]
struct Subtract;
impl Tool for Subtract {
const NAME: &'static str = "subtract";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "subtract",
"description": "Subtract y from x (i.e.: x - y)",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The number to substract from"
},
"y": {
"type": "number",
"description": "The number to substract"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x - args.y;
Ok(result)
}
}
impl ToolEmbedding for Subtract {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Subtract)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Subtract y from x (i.e.: x - y)".into()]
}
fn context(&self) -> Self::Context {}
}
struct Multiply;
impl Tool for Multiply {
const NAME: &'static str = "multiply";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "multiply",
"description": "Compute the product of x and y (i.e.: x * y)",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The first factor in the product"
},
"y": {
"type": "number",
"description": "The second factor in the product"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x * args.y;
Ok(result)
}
}
impl ToolEmbedding for Multiply {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Multiply)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Compute the product of x and y (i.e.: x * y)".into()]
}
fn context(&self) -> Self::Context {}
}
struct Divide;
impl Tool for Divide {
const NAME: &'static str = "divide";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "divide",
"description": "Compute the Quotient of x and y (i.e.: x / y). Useful for ratios.",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The Dividend of the division. The number being divided"
},
"y": {
"type": "number",
"description": "The Divisor of the division. The number by which the dividend is being divided"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x / args.y;
Ok(result)
}
}
impl ToolEmbedding for Divide {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Divide)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Compute the Quotient of x and y (i.e.: x / y). Useful for ratios.".into()]
}
fn context(&self) -> Self::Context {}
}
#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
// Create OpenAI client
let openai_api_key = env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
let openai_client = Client::new(&openai_api_key);
// Create dynamic tools embeddings
let toolset = ToolSet::builder()
.dynamic_tool(Add)
.dynamic_tool(Subtract)
.dynamic_tool(Multiply)
.dynamic_tool(Divide)
.build();
let embedding_model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);
let embeddings = EmbeddingsBuilder::new(embedding_model.clone())
.documents(toolset.schemas()?)?
.build()
.await?;
let vector_store =
InMemoryVectorStore::from_documents_with_id_f(embeddings, |tool| tool.name.clone());
let index = vector_store.index(embedding_model);
// Create RAG agent with a single context prompt and a dynamic tool source
let calculator_rag = openai_client
.agent("gpt-4")
.preamble(
"You are an assistant here to help the user select which tool is most appropriate to perform arithmetic operations.
Follow these instructions closely.
1. Consider the user's request carefully and identify the core elements of the request.
2. Select which tool among those made available to you is appropriate given the context.
3. This is very important: never perform the operation yourself and never give me the direct result.
Always respond with the name of the tool that should be used and the appropriate inputs
in the following format:
Tool: <tool name>
Inputs: <list of inputs>
"
)
// Add a dynamic tool source with a sample rate of 1 (i.e.: only
// 1 additional tool will be added to prompts)
.dynamic_tools(4, index, toolset)
.build();
// Prompt the agent and print the response
cli_chatbot(calculator_rag).await?;
Ok(())
}