-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_fitting.cpp
executable file
·224 lines (169 loc) · 7.53 KB
/
model_fitting.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::plugins(cpp11)]]
mat logistic(const mat& t, double M, double B) {
return 1 / (1 + exp(-B * (t - M)));
}
// [[Rcpp::export]]
mat compute_kmeans_clust_profs(const mat& dff_kmeans_centers,
const mat& dff2_subsamp) {
// 1) compute distances from subsampled profiles to all cluster centroids
// 2) assign cluster profile estimates to subsampled profiles
mat clust_profs(size(dff2_subsamp), fill::none);
for (unsigned int i = 0; i < dff2_subsamp.n_rows; i++) {
vec dist_vec(dff_kmeans_centers.n_rows, fill::none);
for (unsigned int j = 0; j < dff_kmeans_centers.n_rows; j++) {
dist_vec(j) = norm(dff2_subsamp.row(i) - dff_kmeans_centers.row(j), 1);
}
clust_profs.row(i) =
dff_kmeans_centers.rows(find(dist_vec == min(dist_vec)));
}
return clust_profs;
}
///////////////////////// PREDICT PROFILES
// [[Rcpp::export]]
mat predict_profs(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const List& dff2_profs,
unsigned int alpha_groups) {
mat alpha_mat(alpha.begin(), alpha_groups, dff2_profs.size());
mat pred_profs(size(dff2_subsamp), fill::zeros);
for (uword i = 0; i < dff2_profs.size(); i++) {
mat prof_i = dff2_profs[i];
pred_profs +=
prof_i.each_row() % alpha_mat(alpha_cols_assign - 1, uvec({i})).t();
}
pred_profs += dff2_subsamp.each_row() %
(1 - sum(alpha_mat.rows(alpha_cols_assign - 1), 1).t());
return pred_profs;
}
///////////////// F
// [[Rcpp::export]]
double f(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full, const List& dff2_profs,
unsigned int alpha_groups) {
mat pred_profs = predict_profs(alpha, alpha_cols_assign, dff2_subsamp,
dff2_profs, alpha_groups);
return accu(square(dff2_full - pred_profs)) / (149 * dff2_full.n_rows);
}
///////////////// PENALIZED F
// [[Rcpp::export]]
double f_penal(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full,
const List& dff2_profs, unsigned int alpha_groups, int d,
double lambda1, double lambda2) {
double err = f(alpha, alpha_cols_assign, dff2_subsamp, dff2_full, dff2_profs,
alpha_groups);
double coef_penal = norm(alpha, 1);
double fusion_penal = 0;
for (uword i = 0; i < dff2_profs.size(); i++) {
fusion_penal += norm(
diff(alpha(span(i * alpha_groups, (i + 1) * alpha_groups - 1)), d), 1);
}
return err + lambda1 * coef_penal + lambda2 * fusion_penal;
}
///////////// JACCARD F
// [[Rcpp::export]]
mat calculate_jacc(const mat& pred_profs, const mat& dff2_full, double cutoff,
double B) {
mat pred_sets = logistic(pred_profs, cutoff, B);
mat full_sets = logistic(dff2_full, cutoff, B);
mat jacc_mat(dff2_full.n_rows, 149, fill::none);
for (uword i = 0; i < dff2_full.n_rows; i++) {
for (uword j = 0; j < 149; j++) {
if (all(dff2_full(uvec({i}), regspace<uvec>(21 * j, 21 * (j + 1) - 1)) ==
rowvec({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1}))) {
jacc_mat(i, j) = 0;
continue;
}
const rowvec& pred_set =
pred_sets(uvec({i}), regspace<uvec>(21 * j, 21 * (j + 1) - 1));
const rowvec& full_set =
full_sets(uvec({i}), regspace<uvec>(21 * j, 21 * (j + 1) - 1));
double num = dot(pred_set, full_set);
rowvec denom_vec = pred_set + full_set;
denom_vec(find(denom_vec > 1)).ones();
double denom = sum(denom_vec);
if (num == 0 && denom == 0) {
jacc_mat(i, j) = 1;
} else {
jacc_mat(i, j) = num / denom;
}
}
}
return -jacc_mat;
}
// [[Rcpp::export]]
double f_jacc(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full,
const List& dff2_profs, unsigned int alpha_groups, double cutoff,
double B) {
mat pred_profs = predict_profs(alpha, alpha_cols_assign, dff2_subsamp,
dff2_profs, alpha_groups);
return accu(calculate_jacc(pred_profs, dff2_full, cutoff, B)) /
(149 * dff2_full.n_rows);
}
/////////////// PENALIZED JACCARD F
// [[Rcpp::export]]
double f_penal_jacc(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full,
const List& dff2_profs, unsigned int alpha_groups,
double cutoff, double B, int d, double lambda1,
double lambda2) {
double err = f_jacc(alpha, alpha_cols_assign, dff2_subsamp, dff2_full,
dff2_profs, alpha_groups, cutoff, B);
double coef_penal = norm(alpha, 1);
double fusion_penal = 0;
for (uword i = 0; i < dff2_profs.size(); i++) {
fusion_penal += norm(
diff(alpha(span(i * alpha_groups, (i + 1) * alpha_groups - 1)), d), 1);
}
return err + lambda1 * coef_penal + lambda2 * fusion_penal;
}
///////////// PREDICT NOGAP PROFILES
// [[Rcpp::export]]
mat predict_nogap_profs(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const List& dff2_profs,
const umat& dff2_nogap, unsigned int alpha_groups) {
mat alpha_mat(alpha.begin(), alpha_groups, dff2_profs.size());
mat pred_profs(size(dff2_subsamp), fill::zeros);
pred_profs.cols(regspace<uvec>(20, 21, pred_profs.n_cols - 1)).fill(1);
for (unsigned int i = 0; i < dff2_subsamp.n_rows; i++) {
uvec col_inds = find(dff2_nogap.row(i));
pred_profs(uvec({i}), col_inds).zeros();
for (uword j = 0; j < dff2_profs.size(); j++) {
mat prof_j = dff2_profs[j];
pred_profs(uvec({i}), col_inds) +=
prof_j(uvec({i}), col_inds) %
alpha_mat(alpha_cols_assign - 1, uvec({j})).eval()(col_inds).t();
}
pred_profs(uvec({i}), col_inds) +=
dff2_subsamp(uvec({i}), col_inds) %
(1 - sum(alpha_mat.rows(alpha_cols_assign - 1).eval().rows(col_inds), 1)
.t());
}
return pred_profs;
}
//////////////// NOGAP F
// [[Rcpp::export]]
double f_nogap(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full,
const List& dff2_profs, const umat& dff2_nogap,
unsigned int alpha_groups) {
mat pred_profs = predict_nogap_profs(alpha, alpha_cols_assign, dff2_subsamp,
dff2_profs, dff2_nogap, alpha_groups);
return accu(square(dff2_full - pred_profs)) / (accu(dff2_nogap) / 21);
}
////////////////// NOGAP JACCARD F
// [[Rcpp::export]]
double f_nogap_jacc(const rowvec& alpha, const urowvec& alpha_cols_assign,
const mat& dff2_subsamp, const mat& dff2_full,
const List& dff2_profs, const umat& dff2_nogap,
unsigned int alpha_groups, double cutoff, double B) {
mat pred_profs = predict_nogap_profs(alpha, alpha_cols_assign, dff2_subsamp,
dff2_profs, dff2_nogap, alpha_groups);
return accu(calculate_jacc(pred_profs, dff2_full, cutoff, B)) /
(accu(dff2_nogap) / 21);
}