-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_peer.py
249 lines (214 loc) · 10.9 KB
/
run_peer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import datetime
import gym
from pathlib import Path
from stable_baselines3 import SAC, TD3
from stable_baselines3.common.utils import set_random_seed, \
update_learning_rate
import wandb
from wandb.integration.sb3 import WandbCallback
import predefined_agents # noqa: F401
from dqn_peer import DQNPeer
from peer import PeerGroup, make_peer_class
import env as local_envs # noqa: F401
from callbacks import PeerEvalCallback
from utils import str2bool, add_default_values_to_parser, \
log_reward_avg_in_wandb, add_default_values_to_train_parser, \
new_random_seed, make_env, ControllerArguments
def add_args():
# create arg parser
parser = argparse.ArgumentParser(description="Peer learning.")
# General
parser.add_argument("--save-name", type=str, default="delete_me")
parser = add_default_values_to_parser(parser)
# Training
training = parser.add_argument_group("Training")
add_default_values_to_train_parser(training)
# Peer Learning
peer_learning = parser.add_argument_group("Peer Learning")
peer_learning.add_argument("--follow-steps", type=int, default=10)
peer_learning.add_argument("--switch-ratio", type=float, default=1,
help="How many times peer training compared to "
"solo training Ratio of peer learning "
"episodes to solo episodes; 0 -> only "
"peer learning episodes."
"ratio 0 {'solo': 0, 'peer': 100}"
"ratio 0.2 {'solo': 83, 'peer': 17}"
"ratio 0.25 {'solo': 80, 'peer': 20}"
"ratio 0.333333 {'solo': 75, 'peer': 25}"
"ratio 0.5 {'solo': 67, 'peer': 33}"
"ratio 1 {'solo': 50, 'peer': 50}"
"ratio 2 {'solo': 33, 'peer': 67}"
"ratio 3 {'solo': 25, 'peer': 75}"
"ratio 4 {'solo': 20, 'peer': 80}"
"ratio 5 {'solo': 17, 'peer': 83}")
peer_learning.add_argument("--peer-learning", type=str2bool, nargs="?",
const=True, default=True)
peer_learning.add_argument("--peers-sample-with-noise", type=str2bool,
nargs="?",
const=True, default=True)
peer_learning.add_argument("--use-agent-value", type=str2bool, nargs="?",
const=True, default=True)
peer_learning.add_argument("--use-trust", type=str2bool, nargs="?",
const=True, default=True)
peer_learning.add_argument("--use-trust-buffer", type=str2bool, nargs="?",
const=True, default=True)
peer_learning.add_argument("--trust-buffer-size", type=int, default=1000)
peer_learning.add_argument("--use-critic", type=str2bool, nargs="?",
const=True, default=True)
peer_learning.add_argument("--sample_random_actions", type=str2bool,
nargs="?", const=True, default=False)
peer_learning.add_argument("--trust-lr", type=float, default=0.001)
peer_learning.add_argument("--T", type=float, nargs='*', default=[1])
peer_learning.add_argument("--T-decay", type=float, nargs='*', default=[0])
peer_learning.add_argument("--init-trust-values", type=float, default=200)
peer_learning.add_argument("--init-agent-values", type=float, default=200)
peer_learning.add_argument("--use-advantage", type=str2bool, nargs="?",
const=False, default=False)
peer_learning.add_argument("--sample-from-suggestions", type=str2bool,
nargs="?", const=False, default=False)
peer_learning.add_argument("--epsilon", type=float, default=0.0)
peer_learning.add_argument("--max-peer-epochs", type=int,
default=1_000_000_000)
peer_learning.add_argument("--only-follow-peers", type=str2bool,
nargs="?", const=False, default=False)
return parser
if __name__ == '__main__':
# parse args
arg_parser = add_args()
args = arg_parser.parse_args()
CA = ControllerArguments(args.agent_count)
# assert if any peer learning strategy is chosen peer learning must be True
option_on = (args.use_trust or args.use_critic or args.use_agent_value)
assert (option_on and args.peer_learning) or not option_on
# create results/experiments folder
time_string = datetime.datetime.now().strftime("%Y-%m-%d_%H.%M.%S")
unique_dir = f"{time_string}__{args.job_id}"
experiment_folder = args.save_dir.joinpath(args.save_name, unique_dir)
experiment_folder.mkdir(exist_ok=True, parents=True)
str_folder = str(experiment_folder)
print("Experiment folder is", str_folder)
# suppress gym warnings
gym.logger.set_level(level=gym.logger.DISABLED)
# seed everything
set_random_seed(args.seed)
# init wandb
wandb.tensorboard.patch(root_logdir=str_folder)
run = wandb.init(entity="jgu-wandb", config=args.__dict__,
project="peer-learning",
monitor_gym=True, sync_tensorboard=False,
name=f"{args.save_name}__{args.job_id}",
notes=f"Peer Learning with {args.agent_count} agents on "
f"the {args.env.split('-')[0]} environment.",
dir=str_folder, mode=args.wandb)
# initialize peer group
algo_args = []
peer_args = []
for i in range(args.agent_count):
algo_args.append(
dict(policy="MlpPolicy",
verbose=1,
policy_kwargs=dict(
net_arch=CA.argument_for_every_agent(args.net_arch, i)
),
buffer_size=args.buffer_size,
batch_size=args.batch_size,
gamma=args.gamma,
tau=args.tau,
train_freq=args.train_freq,
target_update_interval=args.target_update_interval,
gradient_steps=args.gradient_steps,
learning_starts=args.buffer_start_size,
learning_rate=CA.argument_for_every_agent(args.learning_rate,
i),
tensorboard_log=None,
device=args.device))
peer_args.append(
dict(temperature=CA.argument_for_every_agent(args.T, i),
temp_decay=CA.argument_for_every_agent(args.T_decay, i),
algo_args=algo_args[i],
env=args.env,
env_args=args.env_args,
use_trust=args.use_trust,
use_critic=args.use_critic,
buffer_size=args.trust_buffer_size,
follow_steps=args.follow_steps,
use_trust_buffer=args.use_trust_buffer,
solo_training=not args.peer_learning,
peers_sample_with_noise=args.peers_sample_with_noise,
sample_random_actions=args.sample_random_actions,
init_trust_values=args.init_trust_values,
sample_from_suggestions=args.sample_from_suggestions,
epsilon=args.epsilon,
only_follow_peers=args.only_follow_peers))
# create Peer classes
SACPeer = make_peer_class(SAC)
TD3Peer = make_peer_class(TD3)
# create peers and peer group
peers = []
callbacks = []
eval_envs = []
for i in range(args.agent_count):
args_for_agent = peer_args[i]
agent_algo = CA.argument_for_every_agent(args.mix_agents, i)
if agent_algo == 'SAC':
args_for_agent["algo_args"]["ent_coef"] = "auto"
args_for_agent["algo_args"]["use_sde"] = True
args_for_agent["algo_args"]["policy_kwargs"]["log_std_init"] = -3
peer = SACPeer(**args_for_agent, seed=new_random_seed())
elif agent_algo == 'TD3':
peer = TD3Peer(**args_for_agent, seed=new_random_seed())
elif agent_algo == 'DQN':
args_for_agent["algo_args"]["exploration_fraction"] = \
args.exploration_fraction
args_for_agent["algo_args"]["exploration_final_eps"] = \
args.exploration_final_eps
peer = DQNPeer(**args_for_agent, seed=new_random_seed())
elif agent_algo in ['Adversarial', 'Expert']:
class_str = f"predefined_agents." \
f"{args.env.split('-')[0]}{agent_algo}"
peer = eval(class_str)(**args_for_agent, seed=new_random_seed())
else:
raise NotImplementedError(
f"The Agent {agent_algo}"
f" is not implemented")
peers.append(peer)
eval_env = make_env(args.env, args.n_eval_episodes, **args.env_args)
# every agent gets its own callbacks
callbacks.append([WandbCallback(verbose=2)])
eval_envs.append(eval_env)
peer_group = PeerGroup(peers, use_agent_values=args.use_agent_value,
lr=args.trust_lr, switch_ratio=args.switch_ratio,
init_agent_values=args.init_agent_values,
use_advantage=args.use_advantage,
max_peer_epochs=args.max_peer_epochs)
# create callbacks
for i in range(args.agent_count):
peer_callback = PeerEvalCallback(eval_env=eval_envs[i],
eval_envs=eval_envs,
peer_group=peer_group,
best_model_save_path=str_folder,
log_path=str_folder,
eval_freq=args.eval_interval,
n_eval_episodes=args.n_eval_episodes)
callbacks[i].append(peer_callback) # type: ignore
# calculate number of epochs based on episode length
max_episode_steps = max(args.min_epoch_length,
gym.spec(args.env).max_episode_steps)
n_epochs = args.steps // max_episode_steps
# load pretrained model
for i, path in enumerate(args.load_paths):
load_path = Path.cwd().joinpath("Experiments", path)
peer = peer_group.peers[i].set_parameters(load_path_or_dict=load_path)
peers[i].learning_rate = 0
peers[i].lr_schedule = lambda _: 0.0
update_learning_rate(peers[i].ent_coef_optimizer, 0)
peers[i].replay_buffer.reset()
peers[i].buffer.buffer.clear()
# train the peer group
peer_group.learn(n_epochs, callbacks=callbacks,
eval_log_path=str_folder,
max_epoch_len=max_episode_steps)
log_reward_avg_in_wandb(callbacks)
for i in args.agents_to_store:
peers[i].save(path=experiment_folder / f'trained_model_{i}')