-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnpredict.py
41 lines (29 loc) · 862 Bytes
/
nnpredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
class Model(object):
def __init__(self,filename):
self.file_name = filename
self.weights,self.biases = self.load_model()
def feed_forward(self, data):
data = np.array([data])
data = data.transpose()
Z = self.weights[0] @ data + self.biases[0]
A = self.sigmoid_array(Z)
num_layers = 4
for i in range(num_layers - 2):
i += 1
Z = self.weights[i] @ A + self.biases[i]
A = self.sigmoid_array(Z)
return A
def predict(self, data):
return self.feed_forward(data)
def load_model(self):
file = open(self.file_name, 'rb')
data = np.load(file, allow_pickle = True)
weights, biases = data[0], data[1]
return weights,biases
def sigmoid_array(self, x):
return 1 / (1 + np.exp(-x))
if __name__=='__main__':
model = Model('model3')
data = model.predict([0.82224265,0.34969363,0.13866422])
print(data)