-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgrid_search.py
116 lines (101 loc) · 4.21 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import itertools
import json
from pathlib import Path
from typing import Any, Dict, List, Literal
import gin
from torch_geometric import seed_everything
from gin_config import get_time_stamp
from rgfn.trainer.logger.logger_base import LoggerBase
from rgfn.trainer.trainer import Trainer
from rgfn.utils.helpers import infer_metric_direction
BEST_PARAM = "@best_param"
@gin.configurable
def grid_search(
base_run_name: str,
base_config_path: str,
params: List[Dict[str, List[Any]]] | Dict[str, List[Any]],
logger: LoggerBase,
best_metric: str = "loss",
metric_direction: Literal["auto", "min", "max"] = "auto",
seed: int = 42,
skip: int = 0,
):
metric_direction = (
infer_metric_direction(best_metric) if metric_direction == "auto" else metric_direction
)
best_valid_metrics: Dict[str, float] = {}
best_parameters: Dict[str, Any] = {}
logger.log_code("rgfn")
logger.log_to_file(gin.operative_config_str(), "grid_operative_config")
logger.log_to_file(gin.config_str(), "grid_config")
logger.log_to_file(json.dumps(params, indent=2), "grid_params")
logger.close()
params_list = [params] if isinstance(params, dict) else params
all_grid_dicts = []
for param_dict in params_list:
keys, values = zip(*param_dict.items())
grid_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]
all_grid_dicts.extend(grid_dicts)
for idx, grid_dict in enumerate(all_grid_dicts):
if idx < skip:
continue
print(f"Running experiment {idx} with parameters {grid_dict}")
experiment_name = f"{base_run_name}/params_{idx}"
bindings = [f'run_name="{experiment_name}"']
grid_dict = {
key: (best_parameters[key] if value == BEST_PARAM else value)
for key, value in grid_dict.items()
}
for key, value in grid_dict.items():
binding = f'{key}="{value}"' if isinstance(value, str) else f"{key}={value}"
bindings.append(binding)
config_files = [base_config_path]
for key, value in grid_dict.items():
if key.startswith("config_file"):
config_files.append(value)
gin.clear_config()
gin.parse_config_files_and_bindings(config_files, bindings=bindings)
run_seed = seed
for key, value in grid_dict.items():
if key == "seed":
run_seed = int(value)
seed_everything(run_seed)
trainer = Trainer()
trainer.logger.log_code("rgfn")
trainer.logger.log_to_file("\n".join(bindings), "bindings")
trainer.logger.log_to_file(gin.operative_config_str(), "operative_config")
trainer.logger.log_to_file(gin.config_str(), "config")
trainer.logger.log_config(grid_dict)
valid_metrics = trainer.train()
trainer.close()
if metric_direction == "min":
is_better = valid_metrics[best_metric] < best_valid_metrics.get(
best_metric, float("inf")
)
else:
is_better = valid_metrics[best_metric] > best_valid_metrics.get(
best_metric, float("-inf")
)
if is_better:
best_valid_metrics = valid_metrics
best_parameters = grid_dict | {"id": f"params_{idx}"}
json_best_parameters = json.dumps(best_parameters, indent=2)
json_best_valid_metrics = json.dumps(best_valid_metrics, indent=2)
logger.restart()
logger.log_to_file(json_best_parameters, "best_params")
logger.log_to_file(json_best_valid_metrics, "best_valid_metrics")
logger.close()
print(f"Best parameters:\n{json_best_parameters}")
print(f"Best valid metrics:\n{json_best_valid_metrics}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, required=True)
parser.add_argument("--skip", type=int, default=0)
args = parser.parse_args()
skip = args.skip
config_path = args.cfg
config_name = Path(config_path).stem
run_name = f"{config_name}/{get_time_stamp()}"
gin.parse_config_files_and_bindings([config_path], bindings=[f'run_name="{run_name}"'])
grid_search(base_run_name=run_name, base_config_path=config_path, skip=skip)