-
Notifications
You must be signed in to change notification settings - Fork 2
/
brand24_api.py
executable file
·453 lines (405 loc) · 15.1 KB
/
brand24_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Version 0.1a26
import os
import time
from configparser import RawConfigParser
from urllib.parse import urljoin, urlparse
import matplotlib.pyplot as plt
import pandas as pd
import plotly
from bs4 import BeautifulSoup
from iso3166 import countries
from requestium import Session
from wordcloud import WordCloud, STOPWORDS
from comprehend import get_language
username = '[email protected]'
passwd = 'password'
sid = '285903724'
driver = '/usr/lib/chromium-browser/chromedriver'
s = Session(webdriver_path=driver,
browser='chrome',
default_timeout=15,
webdriver_options={
'arguments': [
'disable-dev-shm-usage',
'headless',
'no-sandbox'
]
}
)
def clean(df):
# Rename column names
df = df.rename(columns={
'ID': 'id', 'Date': 'date', 'Hrs': 'time', 'Title': 'title',
'Content': 'text', 'Author' : 'author', 'Source': 'url',
'Domain': 'source', 'Category': 'category', 'Country': 'country',
'Sentiment': 'sentiment', 'Followers Count': 'followers',
'Social Media Reach': 'reach', 'Likes': 'likes', 'Dislikes': 'dislikes',
'Shares': 'shares', 'Comments': 'comments'})
# Remove columns with NaN values
df = df.dropna(axis=1, how="all")
# Remove rows with NaN values
df = df.dropna(axis=0, how="all")
# Remove 'trial' row
text = 'This is a trial version. Upgrade to access full data and reports.'
df = df[df.id != text]
# Select important columns
full_columns_list = [
'title', 'text', 'source', 'country', 'sentiment', 'followers',
'reach', 'likes', 'dislikes', 'shares', 'comments']
columns_list = []
for column in full_columns_list:
if column in df.columns:
columns_list.append(column)
df = df[columns_list]
return df
def download_xlsx(s, username, passwd, sid, download_path=None):
"""Export data from www.brand24.com website as xlsx file (Excel) to
download path and return session.
Input:
s -- Requestium session (required |
type: requestium.requestium.Session);
username -- username on www.brand24.com (required | type: str);
passwd -- password for username on www.brand24.com (required |
type: str);
sid -- sid on www.brand24.com (required | type: str);
download_path -- download path (not required | type: str).
Output:
s -- Requestium session (type: requestium.requestium.Session).
"""
s.driver.command_executor._commands['send_command'] = ('POST',
'/session/$sessionId/chromium/send_command')
if download_path is None:
download_path = os.getcwd()
params = {'cmd': 'Page.setDownloadBehavior',
'params': {'behavior': 'allow', 'downloadPath': download_path}}
s.driver.execute('send_command', params)
url = 'https://app.brand24.com/panel/results/?sid=%s' % sid
if not s.driver.current_url.startswith(url):
try:
s.driver.get(url)
s.driver.ensure_element_by_id('results_download').click()
except:
s.close()
return 1
else:
try:
s.driver.ensure_element_by_id('results_download').click()
except:
s.close()
return 1
return s
def find_excel(keyword, dir_abs_path='.'):
results = []
if dir_abs_path == '.':
dir_abs_path = os.getcwd()
for (dirpath, dirnames, filenames) in os.walk(dir_abs_path):
for filename in filenames:
if filename.startswith(keyword):
results.append(filename)
result = sorted(results)[-1]
return result
def get_top_10_hashtags(s, username, passwd, sid, mode='default',
output='hashtags.html'):
result = []
url = 'https://app.brand24.com/panel/analysis/?sid=%s' % sid
if not s.driver.current_url.startswith(url):
try:
s.driver.get(url)
except:
s.close()
return 1
else:
time.sleep(5)
soap = BeautifulSoup(s.driver.page_source, 'lxml')
divs = soap.find('div', class_='trending-hashtags__column-box') \
.find_all('div', class_='trending-hashtags-entry sources_entry')
for div in divs:
hashtag = div.a.text.strip()
mentions = div.find('strong', class_="sources_entry-list-value") \
.text.strip()
result.append({'hashtag': hashtag, 'mentions': mentions})
# Plot.ly
if mode == 'jupyter':
# Jupyter
plotly.offline.init_notebook_mode(connected=True)
df = pd.DataFrame(result)
columns = ['hashtag', 'mentions']
trace = plotly.graph_objs.Table(
header = dict(values = columns,
font = dict(color='white'),
fill = dict(color='#00a0d6'),
line = dict(color='white'),
align = ['left'] * 5),
cells=dict(values = [df.hashtag, df.mentions],
font = dict(color='#1e1e1e'),
fill = dict(color='white'),
line = dict(color='white'),
align = ['left'] * 5))
data = [trace]
plotly.offline.plot(data, validate=False, filename=output)
if mode == 'jupyter':
# Jupyter
plotly.offline.iplot(data, validate=False)
return output
def get_top_10_mentions(s, username, passwd, sid, mode='default',
output='mentions.html'):
result = []
url = 'https://app.brand24.com/panel/analysis/?sid=%s' % sid
if not s.driver.current_url.startswith(url):
try:
s.driver.get(url)
except:
s.close()
return 1
else:
time.sleep(5)
soap = BeautifulSoup(s.driver.page_source, 'lxml')
class_ = 'mention entry-from-most-popular-authors'
divs = soap.find_all('div', class_=class_)
for div in divs:
result.append(parser(div))
# Plot.ly
if mode == 'jupyter':
# Jupyter
plotly.offline.init_notebook_mode(connected=True)
df = pd.DataFrame(result)
columns = ['title', 'text', 'source', 'date', 'time']
trace = plotly.graph_objs.Table(
header = dict(values = columns,
font = dict(color='white'),
fill = dict(color='#00a0d6'),
line = dict(color='white'),
align = ['left'] * 5),
cells=dict(values = [df.title, df.text, df.source, df.date, df.time],
font = dict(color='#1e1e1e'),
fill = dict(color='white'),
line = dict(color='white'),
align = ['left'] * 5))
data = [trace]
plotly.offline.plot(data, validate=False, filename=output)
if mode == 'jupyter':
# Jupyter
plotly.offline.iplot(data, validate=False)
return output
def get_top_mention(s, username, passwd, sid):
result = {}
url = 'https://app.brand24.com/panel/analysis/?sid=%s' % sid
if not s.driver.current_url.startswith(url):
try:
s.driver.get(url)
except:
s.close()
return 1
else:
time.sleep(5)
soap = BeautifulSoup(s.driver.page_source, 'lxml')
class_ = 'mention most-interactive-entry-from-social-media'
dev = soap.find('div', class_=class_)
result = parser(dev)
return result
def language(df, mode='default', output='language.html'):
def detector(value):
lang = get_language(value, language_codes)
return lang
language_codes = RawConfigParser()
language_codes.read('language_codes.cfg')
df['language'] = df.text.map(detector)
langs = df.language[df.language.notna()].unique()
result = []
for i, lang in enumerate(langs):
is_lang = df.language == lang
mentions = df.language[is_lang].count()
result.append({'language': lang, 'mentions': mentions})
tmp = pd.DataFrame(result).sort_values('mentions', ascending=False)
# Plot.ly
if mode == 'jupyter':
# Jupyter
plotly.offline.init_notebook_mode(connected=True)
columns = ['language', 'mentions']
trace = plotly.graph_objs.Table(
header = dict(values = columns,
font = dict(color='white'),
fill = dict(color='#00a0d6'),
line = dict(color='white'),
align = ['left'] * 5),
cells=dict(values = [tmp.language, tmp.mentions],
font = dict(color='#1e1e1e'),
fill = dict(color='white'),
line = dict(color='white'),
align = ['left'] * 5))
data = [trace]
plotly.offline.plot(data, validate=False, filename=output)
if mode == 'jupyter':
# Jupyter
plotly.offline.iplot(data, validate=False)
return output
def location(df, mode='default', output='location.html'):
if mode == 'jupyter':
# Jupyter
plotly.offline.init_notebook_mode(connected=True)
mentions = {}
for i, country in enumerate(countries):
is_code = df.country == country.alpha2
num = df.country[is_code].count()
mentions[i] = {'country': country.name, 'code': country.alpha2,
'mentions': num}
out = pd.DataFrame(mentions).T[['country', 'code', 'mentions']] \
.sort_values('country')
data = [dict(
type = 'choropleth',
locations = out.country,
locationmode = 'country names',
z = out.mentions,
autocolorscale = True,
reversescale = False,
marker = dict(
line = dict(
color = 'rgb(128, 128, 128)',
width = 0.5)),
colorbar = dict(
title = ''))]
layout = dict(
title = '# of mentions by country',
geo = dict(
showframe = False,
showcoastlines = False,
projection = dict(
type = 'Miller')))
fig = dict(data=data, layout=layout)
plotly.offline.plot(fig, validate=False, filename=output)
if mode == 'jupyter':
# Jupyter
plotly.offline.iplot(fig, validate=False)
return output
def login(s, username, passwd):
"""Login to www.brand24.com with username/passwd pair and return session.
Input:
s -- Requestium session (required |
type: requestium.requestium.Session);
username -- username on www.brand24.com (required | type: str);
passwd -- password for username on www.brand24.com (required |
type: str).
Output:
s -- Requestium session (type: requestium.requestium.Session).
"""
url = 'https://app.brand24.com/user/login/'
if not s.driver.current_url.startswith(url):
try:
s.driver.get(url)
s.driver.ensure_element_by_name('login').send_keys(username)
s.driver.ensure_element_by_name('password').send_keys(passwd)
s.driver.ensure_element_by_id('login_button').click()
except:
s.close()
return 1
else:
try:
s.driver.ensure_element_by_name('login').send_keys(username)
s.driver.ensure_element_by_name('password').send_keys(passwd)
s.driver.ensure_element_by_id('login_button').click()
except:
s.close()
return 1
return s
def parser(soap):
domain = 'https://app.brand24.com'
result = {}
# Parse 'text'
text = soap.find('div', class_='mention_text').text
result['text'] = text
# Parse 'title'
title = soap.find('div', class_='mention_title').a.text
result['title'] = title
# Parse 'avatar'
avatar = soap.find('div', class_='mention_avatar').a.img['src']
if not avatar.startswith('http'):
avatar = urljoin(domain, avatar)
result['avatar'] = avatar
# Parse 'source'
source = soap.find('div', class_='mention_meta') \
.find('span', class_='mention_source').text
result['source'] = source
# Parse 'url' and 'id'
path = soap.find('div', class_='mention_meta') \
.find('span', class_='mention_source').a['href']
url = urljoin(domain, path)
result['url'] = url
id_ = urlparse(path).query.split('&')[0].replace('id=', '').strip()
result['id'] = id_
# Parse 'date' and 'time'
d, t = soap.find('div', class_='mention_meta') \
.find('span', class_='mention_date').text.split()
result['date'] = d
result['time'] = t
# Parse 'influencer_score'
spans = soap.find('div', class_='mention_meta').find_all('span')
for span in spans:
if 'Influencer Score:' in span.text:
influencer_score = span.text.split()[-1].replace('/10', '')
break
result['influencer_score'] = influencer_score
return result
def sentiment_analysis(df):
result = {}
sentiments = (-1, 0, 1)
total = df.sentiment[df.sentiment.isin(sentiments)].count()
result['total'] = total
is_negative = df.sentiment == -1
num = df.sentiment[is_negative].count()
result['negative'] = num
is_neutral = df.sentiment == 0
num = df.sentiment[is_neutral].count()
result['neutral'] = num
is_positive = df.sentiment == 1
num = df.sentiment[is_positive].count()
result['positive'] = num
return result
def wordcloud(df, background_color='white', output='wordcloud.png'):
text = ''
# Prepare 'text' var
for i, v in enumerate(df.text):
if i != 0:
text += ' '
text += str(v)
# Remove URLs and nicknames
# TODO
wordcloud = WordCloud(
width = 3000,
height = 2000,
background_color = background_color,
stopwords = STOPWORDS).generate(text)
fig = plt.figure(
figsize = (40, 30),
facecolor = background_color,
edgecolor = background_color)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.savefig(output)
return output
# Example. Export data from www.brand24.com website as xlsx file (Excel) to
# current directory
#download_xlsx(s, username, passwd, sid)
# Example. Export data from www.brand24.com website as xlsx file (Excel) to
# '/tmp' directory
#download_xlsx(s, username, passwd, sid, download_path='/tmp')
# Example. Get top 10 hashtags from www.brand24.com website as Python list and
# create Plot.ly table
#hashtags = get_top_10_hashtags(s, username, passwd, sid)
# Example. Get top 10 mentions by influencer score from www.brand24.com website
# as Python dict and create Plot.ly table
#mentions = get_top_10_mentions(s, username, passwd, sid)
# Example. Get top mention from www.brand24.com website as Python dict
#mention = get_top_mention(s, username, passwd, sid)
# Example. Create choropleth map and save as location.html file
#location(df)
# Example. Create choropleth map and save as example.html file
#location(df, output='example.html')
# Example. Create wordcloud with default white background and save as
# wordcloud.png file
#wordcloud(df)
# Example. Create wordcloud with black background and save as
# example.png file
#wordcloud(df, background_color='black', output='example.png')