-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhypermodel_graph.py
298 lines (217 loc) · 12.6 KB
/
hypermodel_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning.loggers import NeptuneLogger
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from torchvision import utils
from neptune.new.types import File
import itertools
neptune_logger = NeptuneLogger(
#offline_mode=True,
project_name='koritsky/DL2021-Bio',
api_key='eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI3YTY4ZWY2ZC1jNzQxLTQ1ZTctYTM2My03YTZhNDQ5MTRlNzYifQ==',
tags=['Graph head']
)
import os, sys
sys.path.append(os.path.join(sys.path[0], "vehicle"))
sys.path.append(os.path.join(sys.path[0], "hic_akita"))
from vehicle.Models.VEHiCLE_Module import GAN_Model
from hic_akita.akita.models import ModelWGraph
from hic_akita.akita.layers import Symmetrize2d
from dataloader import get_dataloaders
from metrics import get_scores
class Dummy(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
class HyperModel(pl.LightningModule):
def __init__(self,
#akita_checkpoint=None,
graph_checkpoint='hic_akita/checkpoints/ours_symm.pth',
#vehicle_checkpoint=None,
vehicle_checkpoint='vehicle/Weights/vehicle.ckpt'
):
super().__init__()
self.akita = ModelWGraph(target_crop=6, preds_triu=False, symmetrize=True) #Dummy()
if graph_checkpoint is not None:
self.akita.load_state_dict(torch.load(graph_checkpoint))
self.vehicle = GAN_Model() #Dummy()
if vehicle_checkpoint is not None:
self.vehicle.load_state_dict(torch.load(vehicle_checkpoint)['state_dict'])
pass
self.head = nn.Sequential(
nn.Conv2d(2, 16, 3, 1, padding=1),
nn.ReLU(inplace=True),
# nn.BatchNorm2d(16),
Symmetrize2d(),
nn.Conv2d(16, 1, 3, 1, padding=1),
nn.ReLU(inplace=True),
Symmetrize2d()
)
#for awesome pictures
self.mapper = cm.get_cmap('RdBu_r') #cm.ScalarMappable(cmap=cm.RdBu_r)
def configure_optimizers(self):
all_params = list(self.akita.parameters()) + list(self.head.parameters()) + list(self.vehicle.parameters())
opt = torch.optim.AdamW(all_params, lr=1e-5, weight_decay=1e-5)
return [opt]
def akita_forward(self, sequence):
return self.akita(sequence).unsqueeze(1)
def vehicle_forward(self, low_img):
return self.vehicle(low_img)
def forward(self, sequence, low_img):
akita_output = self.akita_forward(sequence)
vehicle_output = self.vehicle_forward(low_img.unsqueeze(1))
combined_input = torch.cat([(akita_output + 2) / 4, vehicle_output], dim=1) #stack along the channel dimension
output = self.head(combined_input)
return output
def training_step(self, batch, batch_idx):
output = self._step(batch)
return output
def training_epoch_end(self, outputs):
self._epoch_logging(outputs, phase='train')
@torch.no_grad()
def validation_step(self, batch, batch_idx):
output = self._step(batch)
return output
def validation_epoch_end(self, outputs):
self._epoch_logging(outputs, phase='val')
def _step(self, batch):
sequence, low_img, high_img_akita, high_img_vehicle = batch
#low_img = low_img.unsqueeze(1) #[bs, 1, 200, 200]
high_img_akita = self.crop_img(high_img_akita.unsqueeze_(1), cropping=6)
high_img_vehicle = self.crop_img(high_img_vehicle.unsqueeze_(1), cropping=6)
akita_output = self.akita_forward(sequence) #[bs, 1, 188, 188]
vehicle_output = self.vehicle_forward(low_img.unsqueeze_(1)) #[bs, 1, 188, 188]
combined_input = torch.cat([(akita_output + 2) / 4, vehicle_output], dim=1) #stack along the channel dimension
output = self.head(combined_input)
#akita_normalized_output = (akita_output.detach() + 2) / 4
akita_loss = F.mse_loss(akita_output.detach(), high_img_akita)
vehicle_loss = F.mse_loss(vehicle_output.detach(), high_img_vehicle)
final_loss = F.mse_loss(output, high_img_vehicle) #will be passed for backward
akita_metrics = self.calculate_metrics(akita_output.detach(), high_img_akita.detach())
vehicle_metrics = self.calculate_metrics(vehicle_output.detach(), high_img_vehicle.detach())
final_metrics = self.calculate_metrics(output.detach(), high_img_vehicle.detach())
return {"loss":final_loss,
"akita_loss":akita_loss.detach(),
"vehicle_loss":vehicle_loss.detach(),
"final_metrics":final_metrics,
"akita_metrics":akita_metrics,
"vehicle_metrics":vehicle_metrics,
"akita_output":akita_output.detach(),
"vehicle_output":vehicle_output.detach(),
"final_output":output.detach(),
"high_img":high_img_vehicle.detach(),
"high_img_akita":high_img_akita.detach(),
}
def _epoch_logging(self, outputs, phase):
averaged_loss = np.mean([o['loss'].item() for o in outputs])
averaged_akita_loss = np.mean([o['akita_loss'].item() for o in outputs])
averaged_vehicle_loss = np.mean([o['vehicle_loss'].item() for o in outputs])
#kludge to test metrics
akita_metrics = []
final_metrics = []
vehicle_metrics = []
for o in outputs:
akita_metrics.append(o['akita_metrics'])
final_metrics.append(o['final_metrics'])
vehicle_metrics.append(o['vehicle_metrics'])
#print("akita metrics: ", akita_metrics)
akita_output = torch.cat([o['akita_output'] for o in outputs[:6]], dim=0).cpu()
final_output = torch.cat([o['final_output'] for o in outputs[:6]], dim=0).cpu()
vehicle_output = torch.cat([o['vehicle_output'] for o in outputs[:6]], dim=0).cpu()
high_imgs = torch.cat([o['high_img'] for o in outputs[:6]], dim=0).cpu()
high_imgs_akita = torch.cat([o['high_img_akita'] for o in outputs[:6]], dim=0).cpu()
###save images###
self.log_pictures(akita_img=akita_output,
vehicle_img=vehicle_output,
final_img=final_output,
high_img=high_imgs,
high_img_akita=high_imgs_akita,
akita_metrics=akita_metrics[:6],
vehicle_metrics=vehicle_metrics[:6],
final_metrics=final_metrics[:6],
phase=phase)
###logging####
self.logger.experiment.log_metric('{}/loss'.format(phase), averaged_loss) # x=self.current_epoch, y=averaged_loss)
self.logger.experiment.log_metric('{}/akita_loss'.format(phase),averaged_akita_loss) # x=self.current_epoch, y=averaged_akita_loss)
self.logger.experiment.log_metric('{}/vehicle_loss'.format(phase), averaged_vehicle_loss) # x=self.current_epoch, y=averaged_vehicle_loss)
self.log_metrics(akita_metrics=akita_metrics,
final_metrics=final_metrics,
vehicle_metrics=vehicle_metrics,
phase=phase)
def log_metrics(self, akita_metrics, final_metrics, vehicle_metrics, phase):
akita_metrics = list(itertools.chain(*akita_metrics))
final_metrics = list(itertools.chain(*final_metrics))
vehicle_metrics = list(itertools.chain(*vehicle_metrics))
self.logger.experiment.log_metric('{}/final_mse'.format(phase), np.mean(final_metrics[::4]))
self.logger.experiment.log_metric('{}/final_spearman'.format(phase), np.mean(final_metrics[1::4]))
self.logger.experiment.log_metric('{}/final_pearson'.format(phase), np.mean(final_metrics[2::4]))
self.logger.experiment.log_metric('{}/final_scc'.format(phase), np.mean(final_metrics[3::4]))
self.logger.experiment.log_metric('{}/akita_mse'.format(phase), np.mean(akita_metrics[::4]))
self.logger.experiment.log_metric('{}/akita_spearman'.format(phase), np.mean(akita_metrics[1::4]))
self.logger.experiment.log_metric('{}/akita_pearson'.format(phase), np.mean(akita_metrics[2::4]))
self.logger.experiment.log_metric('{}/akita_scc'.format(phase), np.mean(akita_metrics[3::4]))
self.logger.experiment.log_metric('{}/vehicle_mse'.format(phase), np.mean(vehicle_metrics[::4]))
self.logger.experiment.log_metric('{}/vehicle_spearman'.format(phase), np.mean(vehicle_metrics[1::4]))
self.logger.experiment.log_metric('{}/vehicle_pearson'.format(phase), np.mean(vehicle_metrics[2::4]))
self.logger.experiment.log_metric('{}/vehicle_scc'.format(phase), np.mean(vehicle_metrics[3::4]))
def _construct_grid(self, img, metrics=None):
bs = img.shape[0] #number of images
fig, ax = plt.subplots(1, bs, sharey=True, figsize=(15*bs, 15))
fig.tight_layout(pad=3.0)
for i in range(bs):
ax[i].imshow(img[i])
#ax[i].set_title("Place for metrics", fontsize=8)
ax[i].set_xticks([]) #off ticks
ax[i].set_yticks([])
if metrics is not None:
metrics_str = "MSE: %.2f \nSpearman: %.2f \nPearson: %.2f \nSCC: %.2f" % tuple(metrics[i])
ax[i].text(0, -0.25, metrics_str, transform=ax[i].transAxes, fontsize=55) #bbox={'facecolor': 'white', 'pad': 10})
return fig
def log_pictures(self, akita_img, vehicle_img, final_img, high_img, high_img_akita, phase, akita_metrics=None, vehicle_metrics=None, final_metrics=None):
grid = self._construct_grid(self.get_colors(final_img), final_metrics) #utils.make_grid(self.get_colors(final_img), nrow=2)
self.logger.experiment.log_image('{}/final_img'.format(phase), grid) #self.current_epoch, grid)
akita_img_normalized = (akita_img + 2) / 4
grid = self._construct_grid(self.get_colors(akita_img_normalized), akita_metrics) #utils.make_grid(self.get_colors(akita_img), nrow=2)
self.logger.experiment.log_image('{}/akita_img'.format(phase), grid) #self.current_epoch, grid)
grid = self._construct_grid(self.get_colors(vehicle_img), vehicle_metrics) #utils.make_grid(self.get_colors(vehicle_img), nrow=2)
self.logger.experiment.log_image('{}/vehicle_img'.format(phase), grid) #self.current_epoch, grid)
grid = self._construct_grid(self.get_colors(high_img)) #utils.make_grid(self.get_colors(high_img), nrow=2)
self.logger.experiment.log_image('{}/high_img'.format(phase), grid) #self.current_epoch, grid)
high_img_akita_normalized = (high_img_akita + 2) / 4
grid = self._construct_grid(self.get_colors(high_img_akita_normalized)) #utils.make_grid(self.get_colors(high_img), nrow=2)
self.logger.experiment.log_image('{}/high_img_akita'.format(phase), grid) #self.current_epoch, grid)
plt.clf()
def calculate_metrics(self, y_pred, y_true):
scores = get_scores(y_pred, y_true)
return [scores['mse'], scores['spearman'], scores['pearson'], scores['scc']]
def get_colors(self, x):
colorized_x = torch.from_numpy(self.mapper(x.numpy()))
colorized_x = colorized_x.squeeze(1)
#colorized_x = colorized_x.permute((0, -1, 1, 2))[:, :-1, :, :]
return colorized_x
def from_upper_triu(self, flatten_triu, img_size=188, num_diags=2):
print("flatten shape: ", flatten_triu.shape)
z = torch.cat([torch.zeros((img_size, img_size)).unsqueeze(0) for _ in range(flatten_triu.shape[0])]) #[batch, img_size, img_size]
triu_tup = torch.triu_indices(img_size, img_size, num_diags) #[2, number of elements in triu]
z[:, triu_tup[0], triu_tup[1]] = flatten_triu
return z + z.pertmute((0, 2, 1))
def crop_img(self, img, cropping=0):
_, _, s1, s2 = img.shape
return img[:, :,
cropping:s1-cropping,
cropping:s2-cropping]
if __name__ == "__main__":
model = HyperModel()
train_dataloader, val_dataloader, test_dataloader = get_dataloaders(batch_size=1)
trainer = pl.Trainer(logger=neptune_logger,
max_epochs=30,
gpus=1,
accumulate_grad_batches=32
)
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)
torch.save(model.state_dict(), "hypermodel-graph.pth")