-
Notifications
You must be signed in to change notification settings - Fork 0
/
classification_based.py
106 lines (78 loc) · 3.49 KB
/
classification_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import tensorflow as tf
import random
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=[None, 32,32,3])
y_ = tf.placeholder(tf.float32, shape=[None, 8])
lr = tf.placeholder(tf.float32)
W_conv1 = weight_variable([3, 3, 3, 16])
b_conv1 = bias_variable([16])
h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([3, 3, 16, 32])
b_conv2 = bias_variable([32])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
W_conv3 = weight_variable([3, 3, 32, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3) + b_conv3)
W_conv4 = weight_variable([3, 3, 128, 256])
b_conv4 = bias_variable([256])
h_conv4 = tf.nn.relu(conv2d(h_conv3, W_conv4) + b_conv4)
h_pool4 = max_pool_2x2(h_conv4)
W_fc1 = weight_variable([8 * 8 * 256, 4096])
b_fc1 = bias_variable([4096])
h_pool4_flat = tf.reshape(h_pool4, [-1, 8*8*256])
h_fc1 = tf.nn.relu(tf.matmul(h_pool4_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([4096, 4096])
b_fc2 = bias_variable([4096])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
W_fc3 = weight_variable([4096, 8])
b_fc3 = bias_variable([8])
y_conv=tf.nn.softmax(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.Session()
# sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sess.run(tf.global_variables_initializer())
# sess.run(tf.initialize_all_variables())
def train(X_train, Y_train, X_validation, Y_validation):
train_tuple = list(zip(X_train, Y_train))
for i in range(10000):
batch = random.sample(train_tuple, 32)
batch_X = [j[0] for j in batch]
batch_Y = [j[1] for j in batch]
if i%1000==0:
with sess.as_default():
va = 0
for j in range(0, len(X_train), 32):
mx = min(j+32, len(X_train))
va = va + (accuracy.eval(feed_dict={x: X_train[j:mx], y_: Y_train[j:mx], keep_prob: 1.0}))*(mx-j)
va /= len(X_train)
print ("train", va)
va = 0
for j in range(0, len(X_validation), 32):
mx = min(j+32, len(X_validation))
va = va + (accuracy.eval(feed_dict={x: X_validation[j:mx], y_: Y_validation[j:mx], keep_prob: 1.0}))*(mx-j)
va /= len(X_validation)
print ("validation", va)
if i%10 == 0 and i!=0:
print ("step", i, "loss", loss_val)
_, loss_val = sess.run([train_step, cross_entropy], feed_dict={x:batch_X, y_: batch_Y, keep_prob: 0.5, lr: 2e-4})
def predict_probabilites(X):
prediction = sess.run([y_conv], feed_dict={x: X, keep_prob: 1.0})
return prediction[0]