-
Notifications
You must be signed in to change notification settings - Fork 7
/
ft_llm.py
661 lines (583 loc) · 26 KB
/
ft_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import os
import sys
from typing import List
import fire
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset, load_from_disk
import transformers
from transformers import Trainer
import torch.distributed as dist
NIL_DATASET = True
from transformers import LlamaTokenizer, LlamaConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
from transformers import set_seed
from transformers import BitsAndBytesConfig
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
import numpy as np
from dataclasses import dataclass
from transformers.utils import logging
from transformers.trainer_callback import TrainerCallback
logger = logging.get_logger(__name__)
llama3_template = '''<|start_header_id|>user<|end_header_id|>
{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
'''
llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n'
class ForceTqdmUpdateCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
# pdsh can't update tqdm, except warning
if state.is_world_process_zero:
if state.global_step % 5 == 0 or state.global_step < 20:
logger.warning('')
@dataclass
class DataCollatorForSeq2SeqForNeg:
tokenizer: PreTrainedTokenizerBase
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if labels is not None:
max_label_length = max(len(l) for l in labels)
if self.pad_to_multiple_of is not None:
max_label_length = (
(max_label_length + self.pad_to_multiple_of - 1)
// self.pad_to_multiple_of
* self.pad_to_multiple_of
)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
if isinstance(feature["labels"], list):
feature["labels"] = (
feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
)
elif padding_side == "right":
feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64)
else:
feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)
_features = self.tokenizer.pad(
{'input_ids': [feature['input_ids'] for feature in features]},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
_features['attention_mask'] = self.tokenizer.pad(
{'input_ids': [feature['attention_mask'] for feature in features]},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)['input_ids']
_features['labels'] = self.tokenizer.pad(
{'input_ids': [feature['labels'] for feature in features]},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)['input_ids']
features = _features
# prepare decoder_input_ids
if (
labels is not None
and self.model is not None
and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
features["decoder_input_ids"] = decoder_input_ids
return features
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
from transformers.trainer_utils import has_length
from transformers.file_utils import is_datasets_available
from transformers.trainer_pt_utils import (
LengthGroupedSampler,
)
from torch.utils.data import RandomSampler, SequentialSampler
class SentembTrainer(Trainer):
force_tqdm_update = True
fix_attention_mask = False
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
if self.force_tqdm_update:
self.add_callback(ForceTqdmUpdateCallback)
# Build the sampler.
if self.args.group_by_length:
if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
lengths = (
self.train_dataset[self.args.length_column_name]
if self.args.length_column_name in self.train_dataset.column_names
else None
)
else:
lengths = None
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
return LengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
lengths=lengths,
model_input_name=model_input_name,
)
return RandomSampler(self.train_dataset)
def compute_loss(self, model, inputs, return_outputs=False):
if self.is_nli and self.use_neg_sentence:
input_ids, labels, neg = inputs["input_ids"], inputs["labels"], inputs['attention_mask']
pad_token_id = self.tokenizer.pad_token_id
if self.fix_attention_mask:
labels[labels < 0 ] = pad_token_id
neg[neg < 0] = pad_token_id
else:
labels[labels < 0 ] = 0
neg[neg < 0] = 0
# padding tensor length
mw = max(input_ids.size(1), labels.size(1), neg.size(1))
pad_size = mw - labels.size(1)
if pad_size > 0:
label_pads = torch.zeros(labels.size(0), pad_size).cuda().long()
label_pads.fill_(pad_token_id)
labels = torch.cat([label_pads, labels], dim=1)
pad_size = mw - input_ids.size(1)
if pad_size > 0:
input_pads = torch.zeros(input_ids.size(0), pad_size).cuda().long()
input_pads.fill_(pad_token_id)
input_ids = torch.cat([input_pads,
input_ids], dim=1)
pad_size = mw - neg.size(1)
if pad_size > 0:
neg_pads = torch.zeros(neg.size(0), pad_size).cuda().long()
neg_pads.fill_(pad_token_id)
neg = torch.cat([neg_pads,
neg], dim=1)
inputs['input_ids'] = torch.cat([input_ids, labels, neg], dim=0)
if self.fix_attention_mask:
inputs['attention_mask'] = (inputs['input_ids'] != pad_token_id).long()
else:
inputs['attention_mask'] = (inputs['input_ids'] > 0).long()
del inputs['labels']
elif self.is_nli:
input_ids, labels = inputs["input_ids"], inputs["labels"]
labels[labels < 0 ] = 0
# padding tensor length
if input_ids.size(1) > labels.size(1):
pad_size = input_ids.size(1) - labels.size(1)
labels = torch.cat([torch.zeros(labels.size(0), pad_size).cuda().long(), labels], dim=1)
else:
pad_size = labels.size(1) - input_ids.size(1)
input_ids = torch.cat([torch.zeros(input_ids.size(0), pad_size).cuda().long(), input_ids], dim=1)
inputs['input_ids'] = torch.cat([input_ids, labels], dim=0)
inputs['attention_mask'] = (inputs['input_ids'] > 0).long()
del inputs['labels']
else:
inputs['input_ids'] = torch.cat([inputs['input_ids'], inputs['input_ids']], dim=0)
inputs['attention_mask'] = torch.cat([inputs['attention_mask'], inputs['attention_mask']], dim=0)
del inputs['labels']
pooler_output = model(output_hidden_states=True, return_dict=True, **inputs).hidden_states[-1][:, -1, :]
if self.use_neg_sentence:
batch_size = pooler_output.size(0)//3
pooler_output = torch.stack([pooler_output[:batch_size],
pooler_output[batch_size:2*batch_size],
pooler_output[2*batch_size:]], dim=1)
z1, z2, z3 = pooler_output[:,0], pooler_output[:,1], pooler_output[:,2]
else:
batch_size = pooler_output.size(0)//2
pooler_output = torch.stack([pooler_output[:batch_size], pooler_output[batch_size:]], dim=1)
z1, z2 = pooler_output[:,0], pooler_output[:,1]
loss_fct = nn.CrossEntropyLoss()
if dist.is_initialized():
if self.use_neg_sentence:
z3_list = [torch.zeros_like(z3) for _ in range(dist.get_world_size())]
dist.all_gather(tensor_list=z3_list, tensor=z3.contiguous())
z3_list[dist.get_rank()] = z3
z3 = torch.cat(z3_list, 0)
# Dummy vectors for allgather
z1_list = [torch.zeros_like(z1) for _ in range(dist.get_world_size())]
z2_list = [torch.zeros_like(z2) for _ in range(dist.get_world_size())]
# Allgather
dist.all_gather(tensor_list=z1_list, tensor=z1.contiguous())
dist.all_gather(tensor_list=z2_list, tensor=z2.contiguous())
# Since allgather results do not have gradients, we replace the
# current process's corresponding embeddings with original tensors
z1_list[dist.get_rank()] = z1
z2_list[dist.get_rank()] = z2
# Get full batch embeddings: (bs x N, hidden)
z1 = torch.cat(z1_list, 0)
z2 = torch.cat(z2_list, 0)
if not hasattr(model, "sim"):
self.sim = Similarity(temp=0.05)
cos_sim = self.sim(z1.unsqueeze(1).float(), z2.unsqueeze(0).float())
if self.use_neg_sentence:
z1_z3_cos = self.sim(z1.unsqueeze(1), z3.unsqueeze(0))
cos_sim = torch.cat([cos_sim, z1_z3_cos], 1)
labels = torch.arange(cos_sim.size(0)).long().to(inputs['input_ids'].device)
if self.use_neg_sentence:
z3_weight = 0
weights = torch.tensor(
[[0.0] * (cos_sim.size(-1) - z1_z3_cos.size(-1)) + [0.0] * i + [z3_weight] + [0.0] * (z1_z3_cos.size(-1) - i - 1) for i in range(z1_z3_cos.size(-1))]
).to(input_ids.device)
cos_sim = cos_sim + weights
loss = loss_fct(cos_sim, labels)
return (loss, pooler_output) if return_outputs else loss
def generate_sentemb_prompt(data_point, tokenizer, cutoff_len, template, prefix='input'):
sp = f's{prefix}'
if sp not in data_point:
input = tokenizer(
data_point[prefix],
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
input = tokenizer.decode(input['input_ids'])
data_point[sp] = input
else:
input = data_point[sp]
template = template.replace('_', ' ').replace('*sep+*', '')\
.replace('*cls*', '').replace('\\n', '\n')
return template.replace('*sent 0*', input).strip()
def train(
# model/data params
base_model: str = "", # the only required argument
data_path: str = "data/nli_for_simcse.csv",
output_dir: str = "./lora-alpaca",
# training hyperparams
batch_size: int = 256,
micro_batch_size: int = 64,
num_epochs: int = 1,
learning_rate: float = 5e-4,
cutoff_len: int = 32,
# lora hyperparams
lora_r: int = 64,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve,
is_sentemb: bool = False,
mask_embedding_sentence_template: str = None,
run_name: str = None,
use_neg_sentence: bool = False,
load_kbit: int = 4,
save_steps: int = 100,
seed: int = 42,
deepspeed: str = None,
logging_steps: int = 10,
grad_checkpoint: bool = False,
fix_attention_mask: bool = False,
set_pad_to_unk: bool = False,
bf16: bool = False,
not_eol: bool = False,
org_attn: bool = False,
):
# set NCCL_DEBUG
global NIL_DATASET
NIL_DATASET = True
group_by_length = False
train_on_inputs = False
cutoff_len = 32
assert load_kbit in [4, 8, 16]
run_name = output_dir
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "cuda"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
#if ddp and False:
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
torch.distributed.init_process_group("nccl")
rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size()
device_id = rank % torch.cuda.device_count()
device = torch.device(device_id)
torch.cuda.set_device(device)
set_seed(seed)
config = None
dtype = torch.float16 if load_kbit == 16 else torch.float32
if bf16:
dtype = torch.bfloat16
if 'Phi-3' not in base_model:
from accelerate import Accelerator
accelerator = Accelerator()
#device = accelerator.device
with accelerator.main_process_first():
base_llm_model = base_model.split('/')[-1] + '-llm'
base_llm_model = os.path.join('models', base_llm_model)
base_llm_model = base_llm_model.strip('-')
if not os.path.exists(base_llm_model):
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
LlavaNextForConditionalGeneration.from_pretrained(
base_model,
device_map='cpu',
).language_model.save_pretrained(base_llm_model)
if load_kbit == 4:
assert load_kbit == 4
MODEL_CLS = AutoModelForCausalLM
model = MODEL_CLS.from_pretrained(
base_llm_model,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16 if bf16 else torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
torch_dtype=torch.bfloat16 if bf16 else torch.float16,
device_map=device_map,
attn_implementation='eager' if org_attn else None,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_llm_model,
load_in_8bit=load_kbit == 8,
load_in_4bit=load_kbit == 4,
torch_dtype=torch.bfloat16 if bf16 else torch.float16,
device_map=device_map,
attn_implementation='eager' if org_attn else None,
)
elif load_kbit == 4:
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16 if bf16 else torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
config=config,
torch_dtype=torch.bfloat16 if bf16 else torch.float16,
_attn_implementation='eager' if 'phi3' in base_model else None,
trust_remote_code=True,
device_map=device_map,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_kbit == 8 ,
torch_dtype=dtype,
device_map=device_map,
)
if 'llama-3' in base_model:
tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3-8b-Instruct")
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
tokenizer.padding = True
elif 'llava' in base_model:
from transformers import LlavaNextProcessor
if base_model == "llava-hf/llava-v1.6-mistral-7b-hf":
# bug in new vision of tokenizer
tokenizer = LlavaNextProcessor.from_pretrained(base_model, revision='a1d521368f8d353afa4da2ed2bb1bf646ef1ff5f').tokenizer
else:
tokenizer = LlavaNextProcessor.from_pretrained(base_model).tokenizer
elif 'Phi-3' in base_model:
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained(base_model, trust_remote_code=True)
tokenizer = processor.tokenizer
tokenizer.padding_side = "left"
tokenizer.padding = True
else:
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if tokenizer.bos_token_id == 0:
# fix bos token id
tokenizer.bos_token_id = 1
tokenizer.eos_token = '</s>'
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.padding_side = "left" # Allow batched inference
if set_pad_to_unk:
tokenizer.pad_token_id = tokenizer.unk_token_id
if 'llama-3' in base_model:
mask_embedding_sentence_template = llama3_template.format(mask_embedding_sentence_template)
if not_eol:
mask_embedding_sentence_template = '*sent_0*'
print(mask_embedding_sentence_template)
def tokenize(prompt, add_eos_token=True, label_prompt=None, neg_prompt=None):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
if label_prompt:
label_result = tokenizer(
label_prompt,
padding=False,
return_tensors=None,
)
result["labels"] = label_result["input_ids"]
if neg_prompt:
neg_result = tokenizer(
neg_prompt,
padding=False,
return_tensors=None,
)
result["attention_mask"] = neg_result["input_ids"]
else:
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
if NIL_DATASET:
data_point['input'] = data_point['sent0']
data_point['output'] = data_point['sent1']
if use_neg_sentence:
data_point['neg'] = data_point['hard_neg']
full_prompt = generate_sentemb_prompt(data_point, tokenizer, cutoff_len,
mask_embedding_sentence_template,
prefix='input')
if NIL_DATASET:
pos_full_prompt = generate_sentemb_prompt(data_point, tokenizer, cutoff_len,
mask_embedding_sentence_template,
prefix='output')
if use_neg_sentence:
neg_full_prompt = generate_sentemb_prompt(data_point, tokenizer, cutoff_len,
mask_embedding_sentence_template,
prefix="neg")
tokenized_full_prompt = tokenize(full_prompt, False,
label_prompt=None if not NIL_DATASET else pos_full_prompt,
neg_prompt=neg_full_prompt if NIL_DATASET and use_neg_sentence else None)
if not train_on_inputs and not NIL_DATASET:
user_prompt = generate_sentemb_prompt({**data_point, "output": ""}, tokenizer, cutoff_len,
mask_embedding_sentence_template,
prefix='input')
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
if grad_checkpoint:
model.enable_input_require_grads()
if load_kbit == 4:
if 'Phi-3' in base_model:
target_modules = [
[f'model.layers.{i}.mlp.gate_up_proj',
f'model.layers.{i}.mlp.down_proj',
f'model.layers.{i}.self_attn.o_proj',
f'model.layers.{i}.self_attn.qkv_proj' ] for i in range(32)
]
target_modules = sum(target_modules, [])
print(target_modules)
else:
model = prepare_model_for_kbit_training(model)
def find_all_linear_names(model):
cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
target_modules = find_all_linear_names(model)
print(target_modules)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
else:
if load_kbit == 8:
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if 'csv' in data_path:
data = load_dataset("csv", data_files=data_path)
elif os.path.isdir(data_path):
data = load_from_disk(data_path)
else:
data = load_dataset("json", data_files=data_path)
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt, num_proc=25)
DC_FUN = DataCollatorForSeq2SeqForNeg if NIL_DATASET and use_neg_sentence else transformers.DataCollatorForSeq2Seq
data_collator = DC_FUN(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
#tokenizer, return_tensors="pt", padding=True
)
trainer = SentembTrainer(
model=model,
train_dataset=train_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True if not bf16 else False,
bf16=bf16,
logging_steps=logging_steps,
evaluation_strategy="no",
save_strategy="steps",
eval_steps=None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=100,
load_best_model_at_end=False,
#ddp_find_unused_parameters=False if ddp else None,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
run_name=run_name,
report_to=None,
deepspeed=deepspeed,
gradient_checkpointing=grad_checkpoint,
),
data_collator=data_collator,
)
trainer.tokenizer = tokenizer
trainer.is_nli = NIL_DATASET
trainer.use_neg_sentence = use_neg_sentence
trainer.fix_attention_mask = fix_attention_mask
model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(output_dir)
if __name__ == "__main__":
fire.Fire(train)