-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
154 lines (126 loc) · 5.95 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
library(shiny)
library(tidyverse)
library(readxl)
library(shinythemes)
library(shinyjs)
library(shinyscreenshot)
# install.packages("remotes")
#remotes::install_github("deepanshu88/shinyDarkmode")
library(shinyDarkmode)
################################################################################
#data <- readxl::read_excel("Shiny_Data.xlsx")
data <- readRDS("wwc-shiny-13Sep2023.RDS")
################################################################################
jscode <- "shinyjs.refresh_page = function() { history.go(0); }"
server <- function(input, output, session) {
darkmode(buttonColorDark = "#7f9f3d", # Background color of the button while in lightmode
buttonColorLight = "#639dad", # Background color of the button while in darkmode
backgroundColor = "#fff", # Background color of the page while in lightmode
mixColor = "#fff", # Color used to generate darkmode: lighter colors create darker darkmode
label = "<strong>|</strong>", # Text that shows up on the darkmode button
bottom = "32px",
right = "16px",
autoMatchOsTheme = TRUE
)
################################################################################
###### GENERATE LINEAR RIR/ITCV RESULTS ######
################################################################################
filtered_data <- reactive({
filter_condition <- rep(TRUE, nrow(data))
if (input$selectedDomain != "All") {
if (input$selectedDomain == "Academic Readiness, Knowledge, or Skills (Pre-K through Postsecondary)") {
filter_condition <- filter_condition & data$`Outcome Domain Group` == input$selectedDomain
} else {
filter_condition <- filter_condition & data$`Outcome Domain Group Expanded` == input$selectedDomain
}
}
if (input$selectedStudyDesign != "All") {
filter_condition <- filter_condition & data$s_Study_Design == input$selectedStudyDesign
}
if (input$selectedDichCont != "All") {
#filter_condition <- filter_condition & data$`Dichotomous or Continuous` == input$selectedDichCont
filter_condition <- filter_condition & data$outcome_type == input$selectedDichCont
}
if (input$selectedFindingRating != "All") {
filter_condition <- filter_condition & data$f_Finding_Rating == input$selectedFindingRating
}
data[filter_condition, ]
})
output$histPlot <- renderPlot({
variable_to_plot <- input$selectedVariable
if (variable_to_plot != "Unselected" && nrow(filtered_data()) > 0) {
p <- ggplot(filtered_data(), aes_string(x = variable_to_plot)) +
geom_histogram(bins = 30, fill = "#619CFF", color = "#619CFF", alpha = 0.8) +
theme_minimal() +
labs(x = case_when(
variable_to_plot == "RIR_primary" ~ "RIR values",
variable_to_plot == "RIR_percent" ~ "RIR as a percentage of Sample Size values",
TRUE ~ ""
),
y = "Frequency") +
theme(plot.title = element_text(size = 16, face = "bold"))
if (variable_to_plot == "RIR_primary") {
p <- p + scale_x_continuous(labels = scales::comma, limits = c(0, 1000))
} else {
p <- p + scale_x_continuous(labels = scales::comma)
}
if (!is.null(input$userValue) && !is.na(input$userValue) &&
(input$selectedVariable == "RIR_primary" ||
input$selectedVariable == "RIR_percent" ||
input$selectedVariable == "fragility_primary.lo")) {
p <- p + geom_vline(xintercept = input$userValue, color = "red", linetype = "solid")
}
print(p)
} else {
plot.new()
text(0.5, 0.5, "", cex = 1.2)
}
})
output$descriptiveStatsTable <- renderTable({
variable_to_analyze <- input$selectedVariable
filtered_data_subset <- filtered_data()
if (variable_to_analyze == "Unselected") {
data.frame(Message = "Please select a sensitivity measure from the drop down box to the left to retrieve information for desired reference distribution.")
} else if (nrow(filtered_data_subset) > 0) {
numeric_values <- filtered_data_subset[, variable_to_analyze]
numeric_values <- numeric_values[!is.na(numeric_values)]
if (length(numeric_values) > 0) {
numeric_values <- round(numeric_values)
stats <- summary(numeric_values)
stats <- round(stats,2)
count <- length(numeric_values)
sd_value <- sd(numeric_values,2)
stat_names <- c("Count", "Minimum", "1st Quartile", "Median", "Mean", "3rd Quartile", "Maximum", "Standard Deviation")
stat_table <- data.frame(
Statistic = stat_names,
Value = c(count, stats[1], stats[2], stats[3], stats[4], stats[5], stats[6], sd_value)
)
colnames(stat_table) <- c("Statistic", paste("Value"))
stat_table
} else {
data.frame(Message = "No numeric data available for the selected variable.")
}
} else {
data.frame(Message = "No data available for the selected filters.")
}
}, spacing = "xs", width = "100%",
bordered = TRUE, hover = TRUE, striped = TRUE, responsive = TRUE)
output$percentileResult <- renderText({
req(input$selectedVariable, input$userValue)
if (input$selectedVariable %in% c("RIR_primary", "RIR_percent","fragility_primary.lo")) {
user_value <- input$userValue
filtered_data_subset <- filtered_data()[, input$selectedVariable]
if (is.null(user_value)) {
"Input your value"
} else if (!is.na(user_value) && user_value >= 0) {
percentile <- mean(filtered_data_subset <= user_value, na.rm = TRUE) * 100
# paste0("Your value of ", user_value, " is in the ", round(percentile, 2), "th percentile.")
paste0("Your value of ", user_value, " is equal to or greater than ", round(percentile), "% of the values in the selected reference distribution.")
} else {
""
}
} else {
""
}
})
}