-
Notifications
You must be signed in to change notification settings - Fork 0
/
DFracF_numpy.py
124 lines (80 loc) · 2.64 KB
/
DFracF_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
from scipy import linalg
import math
import tensorflow as tf
import os
def dfrtmtrx(N, a):
# Approximation order
app_ord = 2
Evec = _dis_s(N,app_ord)
even = 1 - (N%2)
l = np.array(list(range(0,N-1)) + [N-1+even])
f = np.diag(np.exp(-1j*math.pi/2*a*l))
F= N**(1/2)*np.einsum("ij,jk,ni->nk", f, Evec.T, Evec, optimize=True)
return F
def _dis_s(N,app_ord):
S = _creates(N,app_ord)
p = N
r = math.floor(N/2)
P = np.zeros((p,p))
P[0,0] = 1
even = 1 - (p%2)
for i in range(1,r-even+1):
P[i,i] = 1/(2**(1/2))
P[i,p-i] = 1/(2**(1/2))
if even:
P[r,r] = 1
for i in range(r+1,p):
P[i,i] = -1/(2**(1/2))
P[i,p-i] = 1/(2**(1/2))
CS = np.einsum("ij,jk,ni->nk", S, P.T, P, optimize=True)
C2 = CS[0:math.floor(N/2+1), 0:math.floor(N/2+1)]
S2 = CS[math.floor(N/2+1):N, math.floor(N/2+1):N]
ec, vc = linalg.eig(C2)
# idx = np.argsort(ec)
# ec = ec[idx]
# vc = vc[:,idx]
es, vs = linalg.eig(S2)
# idx = np.argsort(es)
# es = es[idx]
# vs = vs[:,idx]
qvc = np.vstack((vc, np.zeros([math.ceil(N/2-1), math.floor(N/2+1)])))
SC2 = P@qvc # Even Eigenvector of S
qvs = np.vstack((np.zeros([math.floor(N/2+1), math.ceil(N/2-1)]),vs))
SS2 = P@qvs # Odd Eigenvector of S
idx = np.argsort(-ec)
SC2 = SC2[:,idx]
idx = np.argsort(-es)
SS2 = SS2[:,idx]
if N%2 == 0:
S2C2 = np.zeros([N,N+1])
SS2 = np.hstack([SS2, np.zeros((SS2.shape[0],1))])
S2C2[:,range(0,N+1,2)] = SC2;
S2C2[:,range(1,N,2)] = SS2
S2C2 = np.delete(S2C2, (N-1), axis=1)
else:
S2C2 = np.zeros([N,N])
S2C2[:,range(0,N+1,2)] = SC2;
S2C2[:,range(1,N,2)] = SS2
Evec = S2C2
return Evec
def _creates(N,app_ord):
# Creates S matrix of approximation order ord
# When ord=1, elementary S matrix is returned
app_ord = int(app_ord / 2)
s = np.concatenate((np.array([0, 1]), np.zeros(N-1-2*app_ord), np.array([1])))
S = _cconvm(N,s) + np.diag((np.fft.fft(s)).real)
return S
def _cconvm(N,s):
# Generates circular Convm matrix
M = np.zeros((N,N))
dum = s
for i in range(N):
M[:,i] = dum
dum = np.roll(dum,1)
return M
mt1= dfrtmtrx(6,1.2)
mt1_inv = dfrtmtrx(6,-1.2)
x= np.array([[1,2,3,4,5,6]]).T
y= mt1@x
z= mt1_inv@y/6