-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_propaganda_statistics.py
466 lines (370 loc) · 18.3 KB
/
get_propaganda_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import re
import os
import csv
import json
from indicnlp.tokenize import sentence_tokenize
from indicnlp.tokenize import indic_tokenize
def run_validation():
valid = True
art_count = sum(binary_overall_count.values())
s_count = sum(binary_overall_sentence_count.values())
t_count = sum(binary_overall_token_count.values())
if all_article_counts != art_count:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Total articles', all_article_counts)
print ('Overall article count', art_count)
print()
if all_sentence_counts != s_count:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Total Sentences', all_sentence_counts)
print ('Overall sentence count', s_count)
print()
if all_token_counts != t_count:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Total Tokens', all_token_counts)
print ('Overall token count', t_count)
print()
newspaper_prop = 0
newspaper_non = 0
for newspaper, tags in binary_count.items():
newspaper_prop+=tags[prop_tags[1]]
newspaper_non+=tags[prop_tags[0]]
newspaper_prop_tok = 0
newspaper_non_tok = 0
for newspaper, tags in binary_token_count.items():
newspaper_prop_tok+=tags[prop_tags[1]]
newspaper_non_tok+=tags[prop_tags[0]]
newspaper_prop_sent = 0
newspaper_non_sent = 0
for newspaper, tags in binary_sentence_count.items():
newspaper_prop_sent+=tags[prop_tags[1]]
newspaper_non_sent+=tags[prop_tags[0]]
tot_tech = sum(tech_overall_count.values())
tot_tech_tok = sum(tech_overall_token_count.values())
tot_tech_sent = sum(tech_overall_sentence_count.values())
newspaper_tech = 0
for newspaper in tech_count:
for count in tech_count[newspaper]:
newspaper_tech += tech_count[newspaper][count]
newspaper_tech_sent = 0
for newspaper in tech_sentence_count:
for count in tech_sentence_count[newspaper]:
newspaper_tech_sent += tech_sentence_count[newspaper][count]
newspaper_tech_tok = 0
for newspaper in tech_token_count:
for count in tech_token_count[newspaper]:
newspaper_tech_tok += tech_token_count[newspaper][count]
tech_counts = {}
for newspaper, tech in tech_count.items():
for tech_name, tech_c in tech.items():
if tech_name in tech_counts:
tech_counts[tech_name]+=tech_c
else:
tech_counts[tech_name] = tech_c
tech_sent_counts = {}
for newspaper, tech in tech_sentence_count.items():
for tech_name, tech_c in tech.items():
if tech_name in tech_sent_counts:
tech_sent_counts[tech_name]+=tech_c
else:
tech_sent_counts[tech_name] = tech_c
tech_tok_counts = {}
for newspaper, tech in tech_token_count.items():
for tech_name, tech_c in tech.items():
if tech_name in tech_tok_counts:
tech_tok_counts[tech_name]+=tech_c
else:
tech_tok_counts[tech_name] = tech_c
overall_c = binary_overall_count[prop_tags[1]]
overall_c_sent = binary_overall_sentence_count[prop_tags[1]]
overall_c_tok = binary_overall_token_count[prop_tags[1]]
if overall_c != newspaper_prop:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Prop Article Count', overall_c)
print ('Newspaper Prop Article Count', newspaper_prop)
print()
if tot_tech != newspaper_tech:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Overall Tech Article Count', tot_tech)
print ('Newspaper Tech Article Count', newspaper_tech)
print()
if overall_c_sent == newspaper_prop_sent == tot_tech_sent == newspaper_tech_sent:
pass
else:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Prop Sentence Count', overall_c_sent)
print ('Newspaper Prop Sentence Count', newspaper_prop_sent)
print ('Overall Tech Sentence Count', tot_tech_sent)
print ('Newspaper Tech Sentence Count', newspaper_tech_sent)
print()
if overall_c_tok == newspaper_prop_tok == tot_tech_tok == newspaper_tech_tok:
pass
else:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Prop Token Count', overall_c_tok)
print ('Newspaper Prop Token Count', newspaper_prop_tok)
print ('Overall Tech Token Count', tot_tech_tok)
print ('Newspaper Tech Token Count', newspaper_tech_tok)
print()
overall_c_non = binary_overall_count[prop_tags[0]]
overall_c_sent_non = binary_overall_sentence_count[prop_tags[0]]
overall_c_tok_non = binary_overall_token_count[prop_tags[0]]
if overall_c_non != newspaper_non:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Non Prop Article Count', overall_c_non)
print ('Newspaper Non Prop Article Count', newspaper_non)
print()
if overall_c_sent_non != newspaper_non_sent:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Non Prop Sentence Count', overall_c_sent_non)
print ('Newspaper Non Prop Sentence Count', newspaper_non_sent)
print()
if overall_c_tok_non != newspaper_non_tok:
valid = False
print ('Validation Failed: All of the following must be equal')
print ('Non Prop Token Count', overall_c_tok_non)
print ('Newspaper Non Prop Token Count', newspaper_non_tok)
print()
for tech, tech_c in tech_overall_count.items():
newspaper_count = tech_counts[tech]
if tech_c != newspaper_count:
valid = False
print ('Validation Failed: The following counts (overall technique and individual newspaper technique) must be equal')
print ('Articles', tech, tech_c, newspaper_count)
print()
for tech, tech_c in tech_overall_sentence_count.items():
newspaper_count = tech_sent_counts[tech]
if tech_c != newspaper_count:
valid = False
print ('Validation Failed: The following counts (overall technique and individual newspaper technique) must be equal')
print ('Sentences', tech, tech_c, newspaper_count)
print()
for tech, tech_c in tech_overall_token_count.items():
newspaper_count = tech_tok_counts[tech]
if tech_c != newspaper_count:
valid = False
print ('Validation Failed: The following counts (overall technique and individual newspaper technique) must be equal')
print ('Tokens', tech, tech_c, newspaper_count)
print()
if valid:
print ('All Validation Test Passed!')
def write_statistics():
w_fname = 'propaganda_counts.txt'
print ('Writing Statistics to', w_fname)
with open (w_fname, 'w') as f_w:
f_w.write('Total Count\n')
f_w.write('===================================\n')
f_w.write('Article Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_overall_count, indent=3))
f_w.write('\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Token Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_overall_token_count, indent=3))
f_w.write('\n')
# f_w.write(str(binary_overall_token_count)+'\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Sentence Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_overall_sentence_count, indent=3))
f_w.write('\n')
# f_w.write(str(binary_overall_sentence_count)+'\n')
f_w.write('===================================\n\n\n')
f_w.write('Newspaper-wise Total Count\n')
f_w.write('===================================\n')
f_w.write('Article Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_count, indent=3))
f_w.write('\n')
# f_w.write(str(binary_count)+'\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Token Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_token_count, indent=3))
f_w.write('\n')
# f_w.write(str(binary_token_count)+'\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Sentence Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(binary_sentence_count, indent=3))
f_w.write('\n')
# f_w.write(str(binary_sentence_count)+'\n')
f_w.write('===================================\n\n\n')
f_w.write('Total Technique Count\n')
f_w.write('===================================\n')
f_w.write('Article Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_overall_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_overall_count)+'\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Token Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_overall_token_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_overall_token_count)+'\n')
f_w.write('-----------------------------------\n\n')
f_w.write('Sentence Count\n')
# f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_overall_sentence_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_overall_sentence_count)+'\n')
f_w.write('===================================\n\n\n')
f_w.write('Newspaper-wise Total Technique Count\n')
f_w.write('===================================\n')
f_w.write('Article Count\n')
f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_count))
f_w.write('-----------------------------------\n')
f_w.write('Token Count\n')
f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_token_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_token_count))
f_w.write('-----------------------------------\n')
f_w.write('Sentence Count\n')
f_w.write('-----------------------------------\n')
f_w.write(json.dumps(tech_sentence_count, indent=3))
f_w.write('\n')
# f_w.write(str(tech_sentence_count))
f_w.write('===================================\n\n')
prop_tags = ['0', '1']
pat = '([a-zA-Z]+)'
working_dir = os.getcwd()
all_dirs = os.listdir()
tech_count = {}
tech_token_count = {}
tech_sentence_count = {}
tech_overall_count = {}
tech_overall_token_count = {}
tech_overall_sentence_count = {}
all_article_counts = 0
all_token_counts = 0
all_sentence_counts = 0
binary_count = {}
binary_token_count = {}
binary_sentence_count = {}
binary_overall_count = {prop_tags[0]:0, prop_tags[1]:0}
binary_overall_token_count = {prop_tags[0]:0, prop_tags[1]:0}
binary_overall_sentence_count = {prop_tags[0]:0, prop_tags[1]:0}
for cur_dir, sub_dir, all_files in os.walk(working_dir):
for cur_file in all_files:
file_path = os.path.join(cur_dir, cur_file)
if file_path.endswith('.ann'):
all_article_counts+=1
print('Current working file', file_path)
prefix = re.match(pat, cur_file).groups()[0]
txt_file = file_path.replace('.ann', '.txt')
with open(txt_file) as f_t:
article = f_t.read().strip()
all_sents = len(sentence_tokenize.sentence_split(article, lang='hi'))
all_tokens = len(indic_tokenize.trivial_tokenize(article))
all_sentence_counts+=all_sents
all_token_counts+=all_tokens
prop_sent_count = 0
prop_token_count = 0
prop = False
prop_tag = prop_tags[0]
with open(file_path) as f_r:
reader = csv.reader(f_r, delimiter='\t')
for row in reader:
technique = row[1].strip().split()[0]
prop_txt = row[-1].strip()
sent_count = len(sentence_tokenize.sentence_split(prop_txt, lang='hi'))
token_count = len(indic_tokenize.trivial_tokenize(prop_txt))
prop_sent_count+=sent_count
prop_token_count+=token_count
prop = True
prop_tag = prop_tags[1]
if technique in tech_overall_count:
tech_overall_count[technique] += 1
tech_overall_sentence_count[technique] += sent_count
tech_overall_token_count[technique] += token_count
if prefix in tech_count:
if technique in tech_count[prefix]:
tech_count[prefix][technique] += 1
tech_sentence_count[prefix][technique] += sent_count
tech_token_count[prefix][technique] += token_count
else:
tech_count[prefix][technique]= 1
tech_sentence_count[prefix][technique] = sent_count
tech_token_count[prefix][technique] = token_count
else:
tech_count[prefix] = {technique: 1}
tech_sentence_count[prefix]= {technique: sent_count}
tech_token_count[prefix] = {technique: token_count}
else:
tech_overall_count[technique] = 1
tech_overall_sentence_count[technique] = sent_count
tech_overall_token_count[technique] = token_count
if prefix in tech_count:
if technique in tech_count[prefix]:
tech_count[prefix][technique] += 1
tech_sentence_count[prefix][technique] += sent_count
tech_token_count[prefix][technique] += token_count
else:
tech_count[prefix][technique]= 1
tech_sentence_count[prefix][technique] = sent_count
tech_token_count[prefix][technique] = token_count
else:
tech_count[prefix] = {technique: 1}
tech_sentence_count[prefix]= {technique: sent_count}
tech_token_count[prefix] = {technique: token_count}
non_sent_count = all_sents - prop_sent_count
non_token_count = all_tokens - prop_token_count
if prop:
prop_tag = prop_tags[1]
binary_overall_count[prop_tag] += 1
binary_overall_sentence_count[prop_tag] += prop_sent_count
binary_overall_token_count[prop_tag] += prop_token_count
binary_overall_sentence_count[prop_tags[0]] += non_sent_count
binary_overall_token_count[prop_tags[0]] += non_token_count
if prefix in binary_count:
if prop_tag in binary_count[prefix]:
binary_count[prefix][prop_tag] += 1
binary_sentence_count[prefix][prop_tag] += prop_sent_count
binary_token_count[prefix][prop_tag] += prop_token_count
binary_sentence_count[prefix][prop_tags[0]] += non_sent_count
binary_token_count[prefix][prop_tags[0]] += non_token_count
else:
binary_count[prefix][prop_tag] = 1
binary_sentence_count[prefix][prop_tag] = prop_sent_count
binary_token_count[prefix][prop_tag] = prop_token_count
binary_sentence_count[prefix][prop_tags[0]] += non_sent_count
binary_token_count[prefix][prop_tags[0]] += non_token_count
else:
binary_count[prefix] = {prop_tag: 1, prop_tags[0]: 0}
binary_sentence_count[prefix] = {prop_tag: prop_sent_count, prop_tags[0]: non_sent_count}
binary_token_count[prefix] = {prop_tag: prop_token_count, prop_tags[0]: non_token_count}
else:
prop_tag = prop_tags[0]
binary_overall_count[prop_tag] += 1
binary_overall_sentence_count[prop_tag] += non_sent_count
binary_overall_token_count[prop_tag] += non_token_count
if prefix in binary_count:
if prop_tag in binary_count[prefix]:
binary_count[prefix][prop_tag] += 1
binary_sentence_count[prefix][prop_tag] += non_sent_count
binary_token_count[prefix][prop_tag] += non_token_count
else:
binary_count[prefix][prop_tag] = 1
binary_sentence_count[prefix][prop_tag] = non_sent_count
binary_token_count[prefix][prop_tag] = non_token_count
else:
binary_count[prefix] = {prop_tag: 1, prop_tags[1]: 0}
binary_sentence_count[prefix] = {prop_tag: non_sent_count, prop_tags[1]: 0}
binary_token_count[prefix] = {prop_tag: non_token_count, prop_tags[1]: 0}
run_validation()
write_statistics()