-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerator.py
executable file
·68 lines (60 loc) · 2.1 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
from utils import real_data_target
def noise(quantity, size):
return Variable(torch.randn(quantity, size))
class GeneratorNet(torch.nn.Module):
"""
A three hidden-layer generative neural network
"""
def __init__(self, out_features, leakyRelu=0.2, hidden_layers=[256, 512, 1024], in_features=100, escalonate=False):
super(GeneratorNet, self).__init__()
self.in_features = in_features
self.layers = hidden_layers.copy()
self.layers.insert(0, self.in_features)
for count in range(0, len(self.layers)-1):
self.add_module("hidden_" + str(count),
nn.Sequential(
nn.Linear(self.layers[count], self.layers[count+1]),
nn.LeakyReLU(leakyRelu)
)
)
if not escalonate:
self.add_module("out",
nn.Sequential(
nn.Linear(self.layers[-1], out_features)
)
)
else:
self.add_module("out",
nn.Sequential(
nn.Linear(self.layers[-1], out_features),
escalonate
)
)
def forward(self, x):
for name, module in self.named_children():
x = module(x)
return x
def create_data(self, quantity):
points = noise(quantity, self.in_features)
try:
data=self.forward(points.cuda())
except RuntimeError:
data=self.forward(points.cpu())
return data.detach().numpy()
def train_generator(optimizer, discriminator, loss, fake_data):
# 2. Train Generator
# Reset gradients
optimizer.zero_grad()
# Sample noise and generate fake data
prediction = discriminator(fake_data)
# Calculate error and backpropagate
error = loss(prediction, real_data_target(prediction.size(0)))
error.backward()
# Update weights with gradients
optimizer.step()
# Return error
return error