-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdiscriminator.py
executable file
·60 lines (50 loc) · 1.95 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
from utils import real_data_target, fake_data_target
class DiscriminatorNet(torch.nn.Module):
"""
A three hidden-layer discriminative neural network
"""
def __init__(self, in_features, leakyRelu=0.2, dropout=0.3, hidden_layers=[1024, 512, 256]):
super(DiscriminatorNet, self).__init__()
out_features = 1
self.layers = hidden_layers.copy()
self.layers.insert(0, in_features)
for count in range(0, len(self.layers)-1):
self.add_module("hidden_" + str(count),
nn.Sequential(
nn.Linear(self.layers[count], self.layers[count+1]),
nn.LeakyReLU(leakyRelu),
nn.Dropout(dropout)
)
)
self.add_module("out",
nn.Sequential(
nn.Linear(self.layers[-1], out_features),
torch.nn.Sigmoid()
)
)
def forward(self, x):
for name, module in self.named_children():
x = module(x)
return x
# train_discriminator(d_optimizer, discriminator, loss, real_data, fake_data)
def train_discriminator(optimizer, discriminator, loss, real_data, fake_data):
# Reset gradients
optimizer.zero_grad()
# 1.1 Train on Real Data
prediction_real = discriminator(real_data)
# Calculate error and backpropagate
error_real = loss(prediction_real, real_data_target(real_data.size(0)))
error_real.backward()
# 1.2 Train on Fake Data
prediction_fake = discriminator(fake_data)
# Calculate error and backpropagate
error_fake = loss(prediction_fake, fake_data_target(real_data.size(0)))
error_fake.backward()
# 1.3 Update weights with gradients
optimizer.step()
# Return error
return error_real + error_fake, prediction_real, prediction_fake