forked from je-santos/MPLBM-UT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpermeability_MRT.cpp
376 lines (297 loc) · 12.5 KB
/
permeability_MRT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/* Modified from file by Wim Degruyter */
#include "palabos3D.h"
#include "palabos3D.hh"
#include <vector>
#include <cmath>
#include <cstdlib>
#include <string>
#include <sstream>
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace plb;
using namespace std;
namespace patch
{
template < typename T > std::string to_string( const T& n )
{
std::ostringstream stm ;
stm << n ;
return stm.str() ;
}
}
using namespace plb;
typedef double T;
//#define DESCRIPTOR descriptors::D3Q19Descriptor
#define DESCRIPTOR descriptors::MRTD3Q19Descriptor
// This function object returns a zero velocity, and a pressure which decreases
// linearly in x-direction. It is used to initialize the particle populations.
class PressureGradient {
public:
PressureGradient(T deltaP_, plint nx_) : deltaP(deltaP_), nx(nx_)
{ }
void operator() (plint iX, plint iY, plint iZ, T& density, Array<T,3>& velocity) const
{
velocity.resetToZero();
density = (T)1 - deltaP*DESCRIPTOR<T>::invCs2 / (T)(nx-1) * (T)iX;
}
private:
T deltaP;
plint nx;
};
// This function grabs the appropiate geometry for the single-phase simulation
void readGeometry(std::string fNameIn, std::string fNameOut,
MultiScalarField3D<int>& geometry, plint run, plint runnum, bool vtk_out,
std::string GeometryName)
{
const plint nx = geometry.getNx();
const plint ny = geometry.getNy();
const plint nz = geometry.getNz();
plint run_diff = ((runnum - 1)/2)+1;
std::string fNameIn_temp1 = fNameIn + GeometryName;
std::string fNameIn_temp = "0";
pcout << "\n" << " Run: "<< run << std::endl;
Box3D sliceBox(0,0, 0,ny-1, 0,nz-1);
// Selects between the original geometry or the fluid 1,2 final config from multiphase sim
if (run == 1) { // original geometry - absolute permeability
fNameIn_temp = fNameIn_temp1 + ".dat";
pcout << "Running absolute permeability "<< std::endl;
}
if (run > run_diff) { // Fluid 1 : Krnw
const plint runner = run - run_diff;
fNameIn_temp = fNameIn + "f1_for_kr_" + patch::to_string(runner)+".dat";
pcout << "Running kr_f1 "<< std::endl;
}
if ( run > 1 && run < (run_diff+1) ) { // Fluid 2 : Krw
fNameIn_temp = fNameIn + "f2_for_kr_"+ patch::to_string(run-1)+".dat";
pcout << "Running kr_f2 "<< std::endl;
}
pcout << "The geometry name is "<< fNameIn_temp << std::endl;
std::unique_ptr<plb::MultiScalarField3D<int> > slice = generateMultiScalarField<int>(geometry, sliceBox);
plb_ifstream geometryFile(fNameIn_temp.c_str());
for (plint iX=3; iX<nx-4; ++iX) {
if (!geometryFile.is_open()) {
pcout << "Error: could not open the geometry file " << fNameIn_temp << std::endl;
exit(EXIT_FAILURE);
}
geometryFile >> *slice;
copy(*slice, slice->getBoundingBox(), geometry, Box3D(iX,iX, 0,ny-1, 0,nz-1));
}
if (vtk_out == true) {
VtkImageOutput3D<T> vtkOut(createFileName("PorousMedium", run, 6), 1.0);
vtkOut.writeData<float>(*copyConvert<int,T>(geometry, geometry.getBoundingBox()), "tag", 1.0);
}
// code to create .st file. Uncomment if needed
//{
//std::auto_ptr<MultiScalarField3D<T> > floatTags = copyConvert<int,T>(geometry, geometry.getBoundingBox());
//std::vector<T> isoLevels;
//isoLevels.push_back(0.5);
//typedef TriangleSet<T>::Triangle Triangle;
//std::vector<Triangle> triangles;
//Box3D domain = floatTags->getBoundingBox().enlarge(-1);
//domain.x0++;
//domain.x1--;
//isoSurfaceMarchingCube(triangles, *floatTags, isoLevels, domain);
//TriangleSet<T> set(triangles);
//std::string outDir = fNameOut + "/";
//set.writeBinarySTL(outDir + "porousMedium.stl");
//}
}
void porousMediaSetup(MultiBlockLattice3D<T,DESCRIPTOR>& lattice,
OnLatticeBoundaryCondition3D<T,DESCRIPTOR>* boundaryCondition,
MultiScalarField3D<int>& geometry, T deltaP)
{
const plint nx = lattice.getNx();
const plint ny = lattice.getNy();
const plint nz = lattice.getNz();
pcout << "Definition of inlet/outlet." << std::endl;
Box3D inlet (0,0, 1,ny-2, 1,nz-2);
boundaryCondition->addPressureBoundary0N(inlet, lattice);
setBoundaryDensity(lattice, inlet, (T) 1.);
Box3D outlet(nx-1,nx-1, 1,ny-2, 1,nz-2);
boundaryCondition->addPressureBoundary0P(outlet, lattice);
setBoundaryDensity(lattice, outlet, (T) 1. - deltaP*DESCRIPTOR<T>::invCs2);
// Where "geometry" evaluates to 1, use bounce-back.
defineDynamics(lattice, geometry, new BounceBack<T,DESCRIPTOR>(), 1);
// Where "geometry" evaluates to 2, use no-dynamics (which does nothing).
defineDynamics(lattice, geometry, new NoDynamics<T,DESCRIPTOR>(), 2);
// pcout << "Initialization of rho and u." << std::endl;
initializeAtEquilibrium( lattice, lattice.getBoundingBox(),
PressureGradient(deltaP, nx) );
lattice.initialize();
delete boundaryCondition;
}
void writeGifs(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint iter, plint run)
{
const plint nx = lattice.getNx();
const plint ny = lattice.getNy();
const plint nz = lattice.getNz();
const plint imSize = 600;
ImageWriter<T> imageWriter("leeloo");
// Write velocity-norm at x=1.
imageWriter.writeScaledGif(createFileName("ux_inlet", run, 6),
*computeVelocityNorm(lattice, Box3D(2,2, 0,ny-1, 0,nz-1)),
imSize, imSize );
// Write velocity-norm at x=nx/2.
imageWriter.writeScaledGif(createFileName("ux_half", run, 6),
*computeVelocityNorm(lattice, Box3D(nx/2,nx/2, 0,ny-1, 0,nz-1)),
imSize, imSize );
}
void writeVTK(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint iter, plint run)
{
VtkImageOutput3D<T> vtkOut(createFileName("vtk_vel", run, 6), 1.);
vtkOut.writeData<float>(*computeVelocityNorm(lattice), "velocityNorm", 1.);
vtkOut.writeData<3,float>(*computeVelocity(lattice), "velocity", 1.);
}
void computePermeability(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, T nu, T deltaP, Box3D domain, T& perm, T& meanU)
{
// Compute only the x-direction of the velocity (direction of the flow).
plint xComponent = 0;
plint nx = lattice.getNx();
plint ny = lattice.getNy();
plint nz = lattice.getNz();
Box3D domain1(0, nx-1, 0, ny-1, 0, nz-1);
meanU = computeAverage(*computeVelocityComponent(lattice, domain1, xComponent));
pcout << "Average velocity = " << meanU << std::endl;
//pcout << "Lattice viscosity nu = " << nu << std::endl;
//pcout << "Grad P = " << deltaP/(T)(nx-1) << std::endl;
perm = nu*meanU / (deltaP/(T)(nx-1));
pcout << "Permeability = " << perm << std::endl;
// return meanU;
}
int main(int argc, char **argv)
{
plbInit(&argc, &argv);
std::string fNameIn ;
std::string fNameOut;
plint nx;
plint ny;
plint nz;
T deltaP ;
T Run;
bool nx_p, ny_p, nz_p;
bool vtk_out;
std::string GeometryName ;
plint maxT;
T conv;
std::string xmlFname;
try {
global::argv(1).read(xmlFname);
}
catch (PlbIOException& exception) {
pcout << "Wrong parameters; the syntax is: "
<< (std::string) global::argv(0) << " input-file.xml" << std::endl;
return -1;
}
// 2. Read input parameters from the XML file.
pcout << "Reading inputs from xml file \n";
try {
XMLreader document(xmlFname);
document["geometry"]["file_geom"].read(GeometryName);
document["geometry"]["size"]["x"].read(nx);
document["geometry"]["size"]["y"].read(ny);
document["geometry"]["size"]["z"].read(nz);
document["geometry"]["per"]["x"].read(nx_p);
document["geometry"]["per"]["y"].read(ny_p);
document["geometry"]["per"]["z"].read(nz_p);
document["folder"]["out_f"].read(fNameOut);
document["folder"]["in_f"].read(fNameIn);
document["simulations"]["press"].read(deltaP);
document["simulations"]["num"].read(Run);
document["simulations"]["iter"].read(maxT);
document["simulations"]["conv"].read(conv);
document["simulations"]["vtk_out"].read(vtk_out);
}
catch (PlbIOException& exception) {
pcout << exception.what() << std::endl;
pcout << exception.what() << std::endl;
return -1;
}
std::string inputF= fNameIn;
global::directories().setOutputDir(fNameOut+"/");
global::directories().setInputDir(inputF+"/");
const T omega = 1.0;
const T nu = ((T)1/omega- (T)0.5)/DESCRIPTOR<T>::invCs2;
const plint runnum = Run;
plint run_diff = ((runnum - 1)/2)+1;
T perm[runnum];
T meanU[runnum];
T rel_perm[runnum];
T Perm;
T Vel;
pcout << "Total simulations: " << runnum << std::endl;
pcout << "The convergence threshold is: " << conv << " %" << std::endl;
for (plint run = 1; run <= runnum; ++run) {
MultiBlockLattice3D<T,DESCRIPTOR> lattice( nx,ny,nz,
new BGKdynamics<T,DESCRIPTOR>(omega) );
// Switch off periodicity.
//lattice.periodicity().toggleAll(false);
lattice.periodicity().toggle(0, nx_p);
lattice.periodicity().toggle(1, ny_p);
lattice.periodicity().toggle(2, nz_p);
MultiScalarField3D<int> geometry(nx,ny,nz);
readGeometry(fNameIn, fNameOut, geometry, run, runnum, vtk_out, GeometryName);
porousMediaSetup(lattice, createLocalBoundaryCondition3D<T,DESCRIPTOR>(),
geometry, deltaP);
pcout << "Simulation begins" << std::endl;
plint iT=0;
T new_avg_f, old_avg_f, relE_f1;
lattice.toggleInternalStatistics(false);
for (;iT<maxT; ++iT) {
if (iT % 250 == 0 && iT > 0) {
lattice.toggleInternalStatistics(true);
pcout << "Iteration " << iT << std::endl;
pcout << "-----------------" << std::endl;
lattice.collideAndStream();
new_avg_f = getStoredAverageEnergy(lattice);
lattice.toggleInternalStatistics(false);
relE_f1 = std::fabs(old_avg_f-new_avg_f)*100/old_avg_f;
pcout << "Relative difference of Energy: " << setprecision(3)
<< relE_f1 <<" %"<<std::endl;
pcout << "The preliminary permeability is: " <<std::endl;
computePermeability(lattice, nu, deltaP, lattice.getBoundingBox(), Perm, Vel);
pcout << "**********************************************" <<std::endl;
if ( relE_f1<conv ){
break;
}
old_avg_f = new_avg_f; // store new properties
}
}
pcout << "End of simulation at iteration " << iT << " for Run "<< run << std::endl;
// pcout << "Permeability:" << std::endl;
computePermeability(lattice, nu, deltaP, lattice.getBoundingBox(), Perm, Vel);
writeGifs(lattice,iT,run);
std::string outDir = fNameOut + "/";
std::string vel_name = outDir + GeometryName + "_vel.dat";
plb_ofstream ofile3( vel_name.c_str() );
ofile3 << setprecision(1) <<*computeVelocity(lattice) << endl;
//std::string rho_name = outDir + GeometryName + "_rho.dat";
//plb_ofstream ofile4( rho_name.c_str() );
//ofile4 << setprecision(10) <<*computeDensity(lattice) << endl;
perm[run]=Perm;
meanU[run]=Vel;
rel_perm[run]=perm[run]/perm[1];
if (run == 1) {
pcout << "Absolute Permeability = " << perm[run] << std::endl;
}
pcout << "Relative Permeability = " << rel_perm[run] << std::endl;
if (vtk_out == true) {
pcout << "Writing VTK file ..." << std::endl;
writeVTK(lattice, iT, run);
}
}
pcout << "Printing outputs" << std::endl;
std::string outDir = fNameOut + "/";
std::string output = outDir + "relPerm&vels.txt";
plb_ofstream ofile(output.c_str());
ofile << "Outputs" << "\n\n";
ofile << "Krw from run: " << "\n" << "Krnw from run: " << (run_diff+1) << std::endl;
for (plint runs = 1; runs <= runnum; ++runs) {
ofile << "Run = " << runs << std::endl;
if (runs == 1) {
ofile << "Absolute Permeability = " << perm[runs] << std::endl;
}
ofile << "Relative Permeability = " << rel_perm[runs] << std::endl;
ofile << "Mean Velocity = " << meanU[runs] << std::endl;
}
}