-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit.py
583 lines (477 loc) · 22.1 KB
/
split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import numpy as np
import matplotlib.pyplot as plt
import argparse
from pathlib import Path
from torch import vmap
from torch.nn.functional import binary_cross_entropy_with_logits
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import json
import sys
from tensorboardX import SummaryWriter
import pickle
import time
from data.dataset import DiffSplitDataset
import cpunet
nbase = (32, 64, 128, 256) # The UNet architecture.
try:
from cc_torch import connected_components_labeling
do_component_split = True
except ImportError:
connected_components_labeling = None
do_component_split = False
print('Could not find cc_torch. Code running without connected component splitting'
' (slow and VRAM intensive inference)')
print('Install from https://github.com/zsef123/Connected_components_PyTorch')
def load_dataset(dataset, train):
dataset = DiffSplitDataset(direc=dataset, test=not train, augment=train, max_n=None)
return dataset
def train_segmentation(model_name, dataset, epochs, batch_size, load, plot, info=None):
# Settings
device = dataset[0][0].device
Path(f'models/{model_name}').mkdir(parents=True, exist_ok=True)
# Make data loader
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=False
)
writer = SummaryWriter(f'models/{model_name}/log_segmentation')
# Make model
in_channels = dataset[0][0].shape[0]
out_channels = 1 # segmentation
model = cpunet.create_net(in_channels, out_channels, nbase=nbase)
if load and Path(f'models/{model_name}/segmentation.pt').exists():
model.load_state_dict(torch.load(f'models/{model_name}/segmentation.pt', map_location='cpu'))
model.to(device)
model.train()
# Make optimizer
opt = torch.optim.Adam(model.parameters(), lr=1e-4)
if load and Path(f'models/{model_name}/segmentation_opt.pt').exists():
opt.load_state_dict(torch.load(f'models/{model_name}/segmentation_opt.pt', map_location='cpu'))
# Train
if plot:
last_plot = 0
plt.figure(figsize=(12, 12))
loss_term = torch.nn.BCEWithLogitsLoss()
for epoch in tqdm(range(epochs), desc='Epoch', position=0):
avg_loss = []
for im, labels in tqdm(loader, leave=False, position=1):
label_segmentation = labels.max(dim=3)[0][:, None, ...]
predicted = model(im)
loss = loss_term(predicted, 1.0 * label_segmentation)
avg_loss.append(float(loss))
loss.backward()
opt.step()
opt.zero_grad()
print(f'\nEpoch {epoch} : loss = {np.mean(avg_loss):.4f} with std {np.std(avg_loss):.4f}')
writer.add_scalar('avg_loss', np.mean(avg_loss), epoch)
if plot and (time.time() - last_plot) > 5:
last_plot = time.time()
with torch.no_grad():
plt.clf()
for i in range(4):
plt.subplot(2, 4, i + 1)
plt.imshow(label_segmentation[i, 0].cpu())
plt.axis('off')
plt.subplot(2, 4, i + 5)
plt.imshow((predicted[i, 0] > 0.0).cpu())
plt.axis('off')
plt.pause(0.001)
# Save
torch.save(model.state_dict(), f'models/{model_name}/segmentation.pt')
torch.save(opt.state_dict(), f'models/{model_name}/segmentation_opt.pt')
if info:
with open(f'models/{model_name}/segmentation_args.txt', 'w') as f:
json.dump(info, f, indent=2)
def calc_optimum(spl1, spl2, labels):
"""
Given two noisy images (spl1, spl2) and labels
this function returns two images with the labels split
into two such that a label ends up in the split with
the highest noise sum.
"""
s_1 = -torch.sum(labels * spl1[:, :, :, None], dim=(1, 2))
s_2 = -torch.sum(labels * spl2[:, :, :, None], dim=(1, 2))
mask = 1 * (s_1 < s_2)
s_1 = torch.sum(labels * mask[:, None, None, :], dim=3) > 0.5
s_2 = torch.sum(labels * (1 - mask)[:, None, None, :], dim=3) > 0.5
return s_1, s_2
def train_split(model_name, dataset, epochs, batch_size, load, plot, info=None):
# Settings
device = dataset[0][0].device
Path(f'models/{model_name}').mkdir(parents=True, exist_ok=True)
Path(f'models/{model_name}/log').mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(f'models/{model_name}/log')
# Make data loader
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=False
)
# Make model
in_channels = dataset[0][0].shape[0] + 1 + 2 # segmentation + a, b
out_channels = 2 # a, b
model = cpunet.create_net(in_channels, out_channels, nbase=nbase)
if load and Path(f'models/{model_name}/split.pt').exists():
model.load_state_dict(torch.load(f'models/{model_name}/split.pt', map_location='cpu'))
model.to(device)
model.train()
# Make optimizer
opt = torch.optim.Adam(model.parameters(), lr=1e-3)
if load and Path(f'models/{model_name}/split_opt.pt').exists():
opt.load_state_dict(torch.load(f'models/{model_name}/split_opt.pt', map_location='cpu'))
# Load segmentation model
in_channels = dataset[0][0].shape[0]
seg_model = cpunet.create_net(in_channels, 1, nbase=nbase)
seg_model.load_state_dict(torch.load(f'models/{model_name}/segmentation.pt', map_location='cpu'))
seg_model.to(device)
seg_model.eval()
# Train
for epoch in tqdm(range(epochs), desc='Epoch', position=0):
avg_loss = []
im_i = -1
for im, labels in loader:
im_i += 1
orig_label_segmentation = labels.max(dim=3)[0]
# Remove labels
for i_batch in range(labels.shape[0]):
if np.random.random() < 0.5:
p = np.random.random() # sampled remove probability
labels[i_batch, :, :, np.random.random(labels.shape[-1]) < p] = 0
label_segmentation = labels.max(dim=3)[0]
# Run segmentation model:
with torch.no_grad():
segmentation = seg_model(im) > 0.0
segmentation[label_segmentation[:, None, ...] == 0] = 0
# Initialize a, b
a = (torch.randn(segmentation.shape, device=device) * segmentation)[:, 0, ...]
b = (torch.randn(segmentation.shape, device=device) * segmentation)[:, 0, ...]
opt_a, opt_b = calc_optimum(a, b, labels)
# Choose times
t = 10**(-10 * (1 - torch.rand(a.shape[0], device=device)**2) * torch.rand(a.shape[0], device=device))
t[torch.rand(segmentation.shape[0], device=device) < 0.35] = 0.0 # sometimes go completely to zero
# Update a, b
do = 'diffusion' if np.random.random() < 0.5 else 'bootstrap'
if do == 'diffusion':
a = t[:, None, None] * opt_a + (1 - t)[:, None, None] * a
b = t[:, None, None] * opt_b + (1 - t)[:, None, None] * b
elif do == 'bootstrap':
# Sometimes we do bootstrapping on the noise instead of simply sampling a `t`.
# This can help the early steps where the input is not necessarily a linear combination
# the labels and gaussian noise.
with torch.no_grad():
full_inp = torch.cat((im, segmentation, a[:, None, :, :], b[:, None, :, :]), dim=1)
res = torch.sigmoid(model(full_inp))
bootstrap_a = res[:, 0, :, :] * segmentation[:, 0, ...]
bootstrap_b = res[:, 1, :, :] * segmentation[:, 0, ...]
a = t[:, None, None] * bootstrap_a + (1 - t)[:, None, None] * a
b = t[:, None, None] * bootstrap_b + (1 - t)[:, None, None] * b
# Optimum could have changed, so update:
opt_a, opt_b = calc_optimum(a, b, labels)
else:
raise AssertionError()
# Predict
full_inp = torch.cat((im, segmentation, a[:, None, :, :], b[:, None, :, :]), dim=1)
predicted = model(full_inp)
# Loss
loss_a = binary_cross_entropy_with_logits(predicted[:, 0, ...], 1.0 * opt_a, reduction='none')
loss_b = binary_cross_entropy_with_logits(predicted[:, 1, ...], 1.0 * opt_b, reduction='none')
loss = torch.sum(segmentation * (loss_a + loss_b)) / (0.1 + torch.sum(segmentation))
avg_loss.append(float(loss))
# Step
loss.backward()
opt.step()
opt.zero_grad()
if plot and epoch >= 1 and im_i % 10 == 0:
plt.pause(0.001)
print(f'\nEpoch {epoch} : loss = {np.mean(avg_loss):.4f} with std {np.std(avg_loss):.4f}')
writer.add_scalar('avg_loss', np.mean(avg_loss), epoch)
if plot:
with torch.no_grad():
plt.clf()
plt.subplot(2, 4, 1)
plt.title(f'{do}')
plt.axis('off')
imshow = np.transpose(im[0].cpu().numpy(), [1, 2, 0])
if imshow.shape[2] == 2:
imshow = np.concatenate((imshow, np.zeros((imshow.shape[0], imshow.shape[1], 1))), axis=2)
plt.imshow(imshow)
plt.subplot(2, 4, 5)
plt.axis('off')
plt.title(f'{t[0] : .3f}')
plt.imshow((orig_label_segmentation[0] + label_segmentation[0]).cpu(), vmin=0, vmax=2)
plt.subplot(2, 4, 2)
plt.axis('off')
plt.imshow(a[0].cpu(), vmin=-2, vmax=2)
plt.subplot(2, 4, 6)
plt.axis('off')
plt.imshow(b[0].cpu(), vmin=-2, vmax=2)
plt.subplot(2, 4, 3)
plt.axis('off')
plt.imshow(opt_a[0].cpu(), vmin=0, vmax=1)
plt.subplot(2, 4, 7)
plt.axis('off')
plt.imshow(opt_b[0].cpu(), vmin=0, vmax=1)
plt.subplot(2, 4, 4)
plt.axis('off')
plt.imshow((segmentation[0, 0] * predicted[0, 0]).cpu() > 0, vmin=0, vmax=1)
plt.subplot(2, 4, 8)
plt.axis('off')
plt.imshow((segmentation[0, 0] * predicted[0, 1]).cpu() > 0, vmin=0, vmax=1)
if epoch == 0:
plt.pause(0.001)
else:
plt.pause(0.001)
writer.add_figure('example', plt.gcf(), epoch)
# Update learning rate
for g in opt.param_groups:
g['lr'] = 0.05**(1/epochs) * g['lr'] # epochs over which we go down two orders of magnitude
# Save
torch.save(model.state_dict(), f'models/{model_name}/split.pt')
torch.save(opt.state_dict(), f'models/{model_name}/split_opt.pt')
if info:
with open(f'models/{model_name}/split_args.txt', 'w') as f:
json.dump(info, f, indent=2)
writer.close()
def split(device, inp, net, seg, time_steps):
inp = torch.cat((inp, seg), dim=1)
a = (torch.randn((inp.shape[0], 1, inp.shape[2], inp.shape[3]), device=device)
* inp[:, -1, ...][:, None, ...])
b = (torch.randn((inp.shape[0], 1, inp.shape[2], inp.shape[3]), device=device)
* inp[:, -1, ...][:, None, ...])
for t_i in range(1, len(time_steps)):
with torch.no_grad():
full_inp = torch.cat((inp, a, b), dim=1)
t = time_steps[t_i]
pred = net(full_inp)
predicted = torch.sigmoid(pred)
tp = time_steps[t_i - 1]
a = predicted[:, 0, ...][:, None, ...] * (t - tp) / (1 - tp) + a * (1 - t) / (1 - tp)
b = predicted[:, 1, ...][:, None, ...] * (t - tp) / (1 - tp) + b * (1 - t) / (1 - tp)
a = a * seg[:, :1]
b = b * seg[:, :1]
return a, b
def segment(c):
a = connected_components_labeling(c)
vs, idxs = torch.unique(a, return_inverse=True, sorted=True)
k = torch.arange(len(vs), device=vs.device)
a = k[idxs]
return a
def comp_idxs(a):
ar = torch.sum(a, dim=0) > 0
r1, r2 = torch.argmax(1 * ar), len(ar) - torch.argmax(torch.flip(1 * ar, dims=(0, )))
ac = torch.sum(a, dim=1) > 0
c1, c2 = torch.argmax(1 * ac), len(ac) - torch.argmax(torch.flip(1 * ac, dims=(0,)))
idxs = torch.stack((c1, c2, r1, r2))
return idxs
def calc_dimensions(comp):
m = torch.arange(1, comp.max() + 1, device=comp.device)
a = comp[None, ...] == m[:, None, None]
idxs = vmap(comp_idxs)(a)
rsize = idxs[:, 1] - idxs[:, 0]
csize = idxs[:, 3] - idxs[:, 2]
return idxs, len(m), torch.max(rsize), torch.max(csize)
def component_split(inp, seg, comp_split_idxs, zero_threshold):
"""
Standard connected components segmentation. We do this to reduce the image resolution
to the smallest possible size.
"""
c_seg = seg.to(torch.uint8)
comps = []
idxs = []
lengths = torch.empty(c_seg.shape[0], device=seg.device, dtype=torch.int64)
sizes = torch.empty((c_seg.shape[0], 2), device=seg.device, dtype=torch.int64)
for i in range(c_seg.shape[0]):
comp = segment(c_seg[i, 0])
comps.append(comp)
idx, length, rsize, csize = calc_dimensions(comp)
idxs.append(idx)
lengths[i] = length
sizes[i, 0] = rsize
sizes[i, 1] = csize
rmax = torch.max(sizes[:, 0])
cmax = torch.max(sizes[:, 1])
r_dim = rmax + (16 - rmax % 16)
c_dim = cmax + (16 - cmax % 16)
achievable_dim = torch.sum(c_dim * r_dim * lengths)
current_dim = seg.shape[0] * seg.shape[2] * seg.shape[3]
potential_speedup = current_dim / achievable_dim
if potential_speedup > 1.1:
print(f'Component splitting!')
new_inp = []
new_seg = []
new_comp_split_idxs = []
for i, idx in enumerate(idxs):
r_dist = idx[:, 1] - idx[:, 0]
add = (r_dim - r_dist) // 2
idx[:, 0] = torch.maximum(0 * idx[:, 0], idx[:, 0] - add)
idx[:, 1] = idx[:, 0] + r_dim
sub = torch.maximum(0 * idx[:, 1], idx[:, 1] - c_seg.shape[2])
idx[:, :2] -= sub[:, None]
c_dist = idx[:, 3] - idx[:, 2]
add = (c_dim - c_dist) // 2
idx[:, 2] = torch.maximum(0 * idx[:, 2], idx[:, 2] - add)
idx[:, 3] = idx[:, 2] + c_dim
sub = torch.maximum(0 * idx[:, 2], idx[:, 3] - c_seg.shape[3])
idx[:, 2:] -= sub[:, None]
for j in range(len(idx)):
new_inp.append(inp[i, :, idx[j, 0]:idx[j, 1], idx[j, 2]:idx[j, 3]][None])
new_seg.append(comps[i][idx[j, 0]:idx[j, 1], idx[j, 2]:idx[j, 3]][None, None] == (j + 1))
new_comp_split_idxs.append((comp_split_idxs[i] + idx[j, ::2])[None])
inp = torch.concatenate(new_inp, dim=0)
seg = torch.concatenate(new_seg, dim=0)
comp_split_idxs = torch.concatenate(new_comp_split_idxs, dim=0)
s = torch.sum(seg, dim=(1, 2, 3))
seg = seg[s > zero_threshold]
inp = inp[s > zero_threshold]
comp_split_idxs = comp_split_idxs[s > zero_threshold]
return inp, seg, comp_split_idxs
def split_recursively(device, inp, net, seg, time_steps, n_times, zero_threshold=10):
seg = seg[:1]
inp = inp[None]
orig_inp = inp
seg = seg[None]
orig_shape = seg.shape[2:]
comp_split_idxs = torch.zeros((1, 2), dtype=torch.int, device=seg.device)
tqdm_range = tqdm(range(n_times), desc=f'Splits = 1', position=1)
for ri in tqdm_range:
if do_component_split:
inp, seg, comp_split_idxs = component_split(inp, seg, comp_split_idxs, zero_threshold)
if seg.shape[0] * seg.shape[1] * seg.shape[2] > 2**20: # (TODO: do not depend on hard-coded value)
# batch to avoid running out of memory
im_idxs = list(range(0, seg.shape[0], 16)) + [seg.shape[0]]
a_s = []
b_s = []
for i in range(1, len(im_idxs)):
i0, i1 = im_idxs[i - 1], im_idxs[i]
a, b = split(device, inp[i0:i1], net, seg[i0:i1], time_steps)
a_s.append(a)
b_s.append(b)
a = torch.cat(a_s, dim=0)
b = torch.cat(b_s, dim=0)
else:
a, b = split(device, inp, net, seg, time_steps)
seg = torch.cat((a, b), dim=0) > 0.5
inp = torch.cat((inp, inp), dim=0)
s = torch.sum(seg, dim=(1, 2, 3))
seg = seg[s > zero_threshold]
inp = inp[s > zero_threshold]
if do_component_split:
comp_split_idxs = torch.cat((comp_split_idxs, comp_split_idxs), dim=0)
comp_split_idxs = comp_split_idxs[s > zero_threshold]
tqdm_range.set_description(f'Splits = {seg.shape[0]}')
if do_component_split:
new_seg = torch.zeros((seg.shape[0], 1, orig_shape[0], orig_shape[1]))
H, W = seg.shape[2:]
for i in range(seg.shape[0]):
r, c = comp_split_idxs[i]
new_seg[i, 0, r:(r + H), c:(c + W)] = seg[i, 0]
seg = new_seg
return seg[:, 0]
def evaluate(model_name, dataset, recursions, steps, info, do_segmentation=None, eval_name='eval'):
# Settings
device = dataset[0][0].device
Path(f'models/{model_name}/{eval_name}').mkdir(parents=True, exist_ok=True)
if do_segmentation:
Path(f'models/{model_name}/{eval_name}/segmentation').mkdir(exist_ok=True)
# Load segmentation model
in_channels = dataset[0][0].shape[0]
seg_model = cpunet.create_net(in_channels, 1, nbase=nbase)
seg_model.load_state_dict(torch.load(f'models/{model_name}/segmentation.pt', map_location='cpu'))
seg_model.to(device)
seg_model.eval()
if do_segmentation:
model = None
else:
# Load model
in_channels = dataset[0][0].shape[0] + 1 + 2 # segmentation + a, b
out_channels = 2 # a, b
model = cpunet.create_net(in_channels, out_channels, nbase=nbase)
model.load_state_dict(torch.load(f'models/{model_name}/split.pt', map_location='cpu'))
model.to(device)
model.eval()
# Diffusion settings
time_steps = torch.tensor([0] + list(np.logspace(-10, 0, (steps - 1))), device=device, dtype=torch.float)
idx = 0
plt.figure(figsize=(20 if do_segmentation else 10, 10))
to_save = []
for im, label in tqdm(dataset, position=0):
with torch.no_grad():
segmentation = seg_model(im[None])[0] > 0.0
if do_segmentation:
label_seg = torch.max(label, dim=2)[0].cpu().numpy()
seg = segmentation[0].cpu().numpy()
im = im.cpu().numpy()
im = np.concatenate((np.transpose(im, [1, 2, 0]), np.zeros((im.shape[1], im.shape[2], 1))), axis=-1)
plt.subplot(1, 3, 1)
plt.imshow(im)
plt.axis('off')
plt.subplot(1, 3, 2)
plt.title('Label')
plt.imshow(label_seg)
plt.axis('off')
plt.subplot(1, 3, 3)
plt.title('Model')
plt.imshow(seg)
plt.axis('off')
plt.savefig(f'models/{model_name}/{eval_name}/segmentation/{idx: 05d}.png')
idx += 1
continue
with torch.no_grad():
a = split_recursively(device, im, model, segmentation, time_steps, n_times=recursions)
to_save.append({
'im': im.cpu().numpy(),
'label': label.cpu().numpy(),
'prediction': a.cpu().numpy()
})
plt.clf()
plt.subplot(4, 4, 1)
im_ = np.transpose(im.cpu().numpy(), [1, 2, 0])
if im_.shape[2] == 2:
im_ = np.concatenate((im_, np.zeros((im_.shape[0], im_.shape[1], 1))), axis=-1)
plt.imshow(im_)
plt.axis('off')
for i in range(min(15, a.shape[0])):
plt.subplot(4, 4, i + 2)
plt.imshow(a[i].cpu(), vmin=0, vmax=1)
plt.axis('off')
plt.savefig(f'models/{model_name}/{eval_name}/{idx: 05d}.png')
idx += 1
with open(f'models/{model_name}/{eval_name}/data.pkl', 'wb') as f:
pickle.dump(to_save, f)
with open(f'models/{model_name}/{eval_name}/data.npz', 'wb') as f:
to_save_np = {}
for i, d in enumerate(to_save):
for k in d:
to_save_np[f'{i:05d}_{k}'] = d[k]
np.savez_compressed(f, **to_save_np)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='data/overlapdataset')
parser.add_argument('--model', type=str, default='overlapdataset')
parser.add_argument('--train-all', action='store_const', const=True)
parser.add_argument('--train-segmentation', action='store_const', const=True)
parser.add_argument('--train-split', action='store_const', const=True)
parser.add_argument('--train-from-scratch', action='store_const', const=True)
parser.add_argument('--plot', action='store_const', const=True)
parser.add_argument('--epochs', type=int, default=250)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--eval', action='store_const', const=True)
parser.add_argument('--eval-segmentation', action='store_const', const=True)
parser.add_argument('--eval-recursions', type=int, default=10)
parser.add_argument('--diffusion-steps', type=int, default=100)
parser.add_argument('--eval-name', type=str, default='eval')
args = parser.parse_args()
info = {'args': vars(args), 'cmd': sys.argv, 'nbase': nbase}
if args.train_all or args.train_segmentation:
dataset = load_dataset(args.dataset, train=True)
train_segmentation(args.model, dataset, args.epochs, args.batch_size,
load=not args.train_from_scratch, plot=args.plot, info=info)
if args.train_all or args.train_split:
dataset = load_dataset(args.dataset, train=True)
train_split(args.model, dataset, args.epochs, args.batch_size,
load=not args.train_from_scratch, plot=args.plot, info=info)
if args.eval or args.eval_segmentation:
dataset = load_dataset(args.dataset, train=False)
evaluate(args.model, dataset, args.eval_recursions, args.diffusion_steps, info=info,
do_segmentation=args.eval_segmentation, eval_name=args.eval_name)
if __name__ == '__main__':
main()