-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolycrystal.py
158 lines (133 loc) · 5.55 KB
/
polycrystal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#%%
import numpy as np
from pymatgen.core import Structure
from pymatgen.io.lammps.data import LammpsData
from scipy.spatial import Voronoi,voronoi_plot_3d
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
#%%
# 1. Load or create multiple crystal structures (grains)
grain1 = LammpsData.from_file("/home/kimia.gh/blue2/B4C_ML_Potential/analysis_scripts/data_files/atom_labels/data.B11-Ce-CBC",atom_style='atomic').structure
grain2 = LammpsData.from_file("/home/kimia.gh/blue2/B4C_ML_Potential/analysis_scripts/data_files/atom_labels/data.B11-Cp-CBC",atom_style='atomic').structure
grain3 = LammpsData.from_file("/home/kimia.gh/blue2/B4C_ML_Potential/analysis_scripts/data_files/atom_labels/data.B12-CBC",atom_style='atomic').structure
grain4 = LammpsData.from_file("/home/kimia.gh/blue2/B4C_ML_Potential/analysis_scripts/data_files/atom_labels/data.B12-CCC",atom_style='atomic').structure
#%%
# 2. Define seed points for grains in 3D space
# These seed points will serve as the centers of the grains in the Voronoi tessellation
#size of desired polycrystal
dims = [160,160,1000]
#pick 50 random seed points
seed_points = np.random.rand(40, 3) * dims
#assign a proportion of the seed points to each grain based on relative abundance
g1_abundance = 0.35
g2_abundance = 0.22
g3_abundance = 0.25
g4_abundance = 0.18
# assign seed points to grains based on abundance
g1_points = seed_points[:int(g1_abundance*len(seed_points))]
g2_points = seed_points[int(g1_abundance*len(seed_points)):int((g1_abundance+g2_abundance)*len(seed_points))]
g3_points = seed_points[int((g1_abundance+g2_abundance)*len(seed_points)):int((g1_abundance+g2_abundance+g3_abundance)*len(seed_points))]
g4_points = seed_points[int((g1_abundance+g2_abundance+g3_abundance)*len(seed_points)):]
points = pd.DataFrame(seed_points, columns=['x','y','z'])
# assign a grain to each seed point based on the abundance
points['grain'] = np.nan
points.loc[points.index[:len(g1_points)], 'grain'] = 'B11-Cp-CBC'
points.loc[points.index[len(g1_points):len(g1_points)+len(g2_points)], 'grain'] = 'B11-Ce-CBC'
points.loc[points.index[len(g1_points)+len(g2_points):len(g1_points)+len(g2_points)+len(g3_points)], 'grain'] = 'B12-CBC'
points.loc[points.index[len(g1_points)+len(g2_points)+len(g3_points):], 'grain'] = 'B12-CCC'
points_df = points.copy()
#visualize the seed points
fig = px.scatter_3d(points, x='x', y='y', z='z', color='grain')
fig.update_layout(scene_aspectmode='data')
fig.show()
#%%
# 3. Perform Voronoi tessellation
vor = Voronoi(seed_points)
# 4. Visualize the Voronoi tessellation
# go.scatter(x=vor.vertices[:, 0], y=vor.vertices[:, 1], z=vor.vertices[:, 2], color='red')
# 5. Assign each Voronoi region to a crystal structure (this step is conceptual)
# For each Voronoi region, you would map it to one of the grains (grain1, grain2, grain3)
# This step requires filling the Voronoi region with atoms from the crystal structure
# and ensuring the structure is periodic if needed.
# You'll have to implement the logic to place the atoms of each grain inside the corresponding Voronoi region.
# %%
import matplotlib.pyplot as plt
fig = voronoi_plot_3d(vor)
plt.show()
#%%
df = points_df.copy()
# Step 2: Perform Voronoi Tessellation using scipy.spatial.Voronoi
# Extract the 3D points from the DataFrame
points = df[["x", "y", "z"]].values
# Conduct Voronoi tessellation
vor = Voronoi(points)
# Step 3: Assign colors to each grain
# Map grain strings to integers to use for coloring
grain_labels = df["grain"].unique()
grain_color_map = {grain: i for i, grain in enumerate(grain_labels)}
colors = [grain_color_map[grain] for grain in df["grain"]]
# Step 4: Create a Plotly figure
fig = go.Figure()
# Plot the seed points (grains) with different colors
fig.add_trace(go.Scatter3d(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
mode='markers',
marker=dict(
size=10,
color=colors,
colorscale='Viridis',
showscale=True,
colorbar=dict(title="Grain")
),
text=[f'Grain: {grain}' for grain in df["grain"]],
name="Grain Centers"
))
# Plot Voronoi vertices
# fig.add_trace(go.Scatter3d(
# x=vor.vertices[:, 0],
# y=vor.vertices[:, 1],
# z=vor.vertices[:, 2],
# mode='markers',
# marker=dict(
# size=4,
# color='black'
# ),
# name="Voronoi Vertices"
# ))
# Step 5: Plot the Voronoi regions (edges)
for region in vor.regions:
if not -1 in region and len(region) > 0:
# Extract the vertices of the Voronoi region
polygon = np.array([vor.vertices[i] for i in region])
if len(polygon) > 2:
# Plot the polygons (only plotting edges for simplicity)
for i in range(len(polygon)):
fig.add_trace(go.Scatter3d(
x=[polygon[i, 0], polygon[(i + 1) % len(polygon), 0]],
y=[polygon[i, 1], polygon[(i + 1) % len(polygon), 1]],
z=[polygon[i, 2], polygon[(i + 1) % len(polygon), 2]],
mode='lines',
line=dict(color='blue', width=2),
showlegend=False
))
# Customize plot layout
fig.update_layout(
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z',
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=6)
),
title="3D Voronoi Tessellation with Grain Assignments",
showlegend=True
)
# limit axes to dims
fig.update_layout(scene=dict(xaxis=dict(range=[0, dims[0]]), yaxis=dict(range=[0, dims[1]]), zaxis=dict(range=[0, dims[2]])))
# Show the plot
fig.show()
# %%