This repository was archived by the owner on Oct 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathprognostic_main_classification.py
133 lines (112 loc) · 4.93 KB
/
prognostic_main_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from dataset import dataSet
from models import *
from keras.callbacks import *
import matplotlib.pyplot as plt
import matplotlib
import itertools
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
matplotlib.use("Qt5Agg")
data = dataSet()
train_data, train_alert_labels, train_rul_minutes, train_condition, test_data, test_alert_labels, test_rul_minutes, test_condition = data.get_all_cache_data()
train_rul_minutes = train_rul_minutes.reshape(-1, 1)
test_rul_minutes = test_rul_minutes.reshape(-1,1)
PREDICT = True
# import random
#
# index = [i for i in range(train_data.shape[0])]
# random.shuffle(index)
# train_data = train_data[index]
# train_alert_labels = train_alert_labels[index]
# train_condition = train_condition[index]
for depth in [18,20, 15, 10]:
log_dir = "logs/"
dropout = 0
train_name = 'Resnet_prognostic_block_%s_embedding_%s' % (depth, dropout)
MODEL_CHECK_PT = "%s.kerascheckpts" % (train_name)
MODEL_NAME = '%s.kerasmodel' % (train_name)
model = build_residual_rcnn_for_prognostic(2048, 2, 4, depth, dropout=dropout)
if not PREDICT:
tb_cb = TensorBoard(log_dir=log_dir + train_name)
ckp_cb = ModelCheckpoint(MODEL_CHECK_PT, monitor='val_loss', save_weights_only=True, verbose=1,
save_best_only=True, period=5)
import os.path
if os.path.exists(MODEL_CHECK_PT):
print("Load weights successfully")
model.load_weights(MODEL_CHECK_PT)
print('Model has been established.')
model.fit([train_data,train_condition], train_alert_labels,
batch_size=32, epochs=10000,
callbacks=[tb_cb, ckp_cb],
initial_epoch=2334,
shuffle=True,
validation_data=([test_data,test_condition], test_alert_labels))
model.save(MODEL_NAME)
else:
if os.path.exists(MODEL_CHECK_PT):
print("Load weights successfully : %s " % (MODEL_CHECK_PT))
model.load_weights(MODEL_CHECK_PT)
else:
raise FileExistsError("No weights found : %s, please train it first" % (MODEL_CHECK_PT))
test_alert_labels_pred = model.predict([test_data,test_condition])
print(model.evaluate([test_data,test_condition],test_alert_labels))
plt.figure()
plt.plot(np.argmax(test_alert_labels,axis=1),label="TEST ALERT")
plt.plot(np.argmax(test_alert_labels_pred,axis=1),'--',label="PRED ALERT")
plt.legend()
plt.show()
plt.close()
train_alert_labels_pred = model.predict([train_data, train_condition])
print(model.evaluate([test_data, test_condition], test_alert_labels))
plt.figure()
plt.plot(np.argmax(train_alert_labels, axis=1), label="TRAIN ALERT")
plt.plot(np.argmax(train_alert_labels_pred, axis=1),'--', label="PRED ALERT")
plt.legend()
plt.show()
plt.close()
from sklearn.metrics import confusion_matrix
print(test_alert_labels_pred.shape, test_alert_labels.shape)
classesTextList = ["Normal", "Inner race", "Outer race", "Cage"]
confusionMatrix = confusion_matrix(np.argmax(test_alert_labels, axis=1),
np.argmax(test_alert_labels_pred, axis=1))
print(confusionMatrix)
plt.figure()
plot_confusion_matrix(confusionMatrix, classes=classesTextList, normalize=True,
title="Normalized Confusion Matrix")
plt.show()
plt.close()
fig = plt.figure()
trainConfusionMatrix = confusion_matrix(np.argmax(train_alert_labels, axis=1),
np.argmax(train_alert_labels_pred, axis=1))
print(trainConfusionMatrix)
plot_confusion_matrix(trainConfusionMatrix, classes=classesTextList, normalize=True,
title="")
plt.legend()
plt.show()