-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrecurrent_network.py
98 lines (77 loc) · 3.1 KB
/
recurrent_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
'''
A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
'''
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import rnn
#import Mnist data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
# to classify images using a recurrent neural network, we consider every image
# row as a sequence of pixels. Because mnist image shape is 28*28px,
# we will then handle 28 sequences of 28 steps for every sample.
# parameters
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10
#network parameters
n_input = 28 #mnist data input (img shape 28*28)
n_steps = 28 #timesteps
n_hidden = 128
n_classes = 10
#tf graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
#Define weights
weights = {
'out' : tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out' : tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
# prepare data shpe to match 'rnn' function requirements
# current data input shape : (batch_size, n_steps, n_input)
#required shape : 'n_steps' tensors list of shpe(batch_size, n_input)
#unstack to get a list of n_steps tensors of shape (batch_size, n_input)
x = tf.unstack(x, n_steps, 1)
#define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias = 1.0)
#get lstm cell utput
output, states = rnn.static_rnn(lstm_cell, x, dtype = tf.float32)
#linear activation, using rnn inner loop last output
return tf.matmul(output[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
#Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred, labels = y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
#evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#initializing the variables
init = tf.global_variables_initializer()
#launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
#reshape data to get 28 squences of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
#run optimization op (backprop)
sess.run(optimizer, feed_dict = {x: batch_x, y: batch_y})
if step % display_step == 0 :
#calculate batch accuracy
acc = sess.run(accuracy, feed_dict = {x : batch_x, y: batch_y})
#loss
loss = sess.run(cost, feed_dict = {x :batch_x,y: batch_y})
print("iter", str(step*batch_size), "minibatch loss", "{:.6f}".format(loss),"training accuracy =","{:.5f}".format(acc))
step += 1
print("optimization finished")
#calculate accuracy for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps,n_input))
test_label = mnist.test.labels[:test_len]
print("testing accuracy:", sess.run(accuracy, feed_dict = {x:test_data, y:test_label}))