-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathloading_data_base.py
103 lines (100 loc) · 4.24 KB
/
loading_data_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""
Loading Database
Created on Wed Jul 11 11:31:31 2018
@author: kevin machado
"""
#
import os
import pandas as pd
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Own Library
import ppfunctions_1 as ppf
# Looking for heart sounds data absolute path
path = 'Data Base HS\\training\\training-a\\a0001.wav'
No_Files = 409 # Total number of files inside folder
matrix_path = [] # Initializing matrix to save all paths
# -----------------------------------------------------------------------------
# Reading the data reference with Pandas
ref = 'Data Base HS\\training\\training-a\\REFERENCE.csv'
ref = ref.replace('\\', '/')
ref = pd.read_csv(ref)
# -----------------------------------------------------------------------------
# Defining 3D plot environment
fig1 = plt.figure(1)
en2D = fig1.add_subplot(111)
en2D.set(xlabel='Energy', ylabel='PWR')
plt.style.use('dark_background')
plt.title('Feature Space in 2D')
fig2 = plt.figure(2)
en3D = fig2.add_subplot(111, projection='3d')
en3D.set(xlabel='Energy', ylabel='PWR', zlabel='K')
plt.title('Feature Space in 3D')
# Starting reading files
for i in range (1, No_Files+1):
print (i)
if i<=9:
# Looking for heart sounds data absolute path
l = path.replace("01", "0%i"%i)
l = os.path.abspath(l)
l = l.replace('\\','/')
matrix_path.append(l)
# ---------------------------------------------------------------------
# Reading file
Fs, data = wf.read(l)
# ---------------------------------------------------------------------
# Getting features ... Replace or add more feature extraccion algorithms
PWR, SePCG =ppf.features_1(data,Fs)
# ---------------------------------------------------------------------
# Plotting features
if ref.iloc[(i-1),1] == 1:
en3D.scatter(SePCG,PWR, 1, c='r', marker='o')
en2D.plot(SePCG,PWR,'ro')
else:
en3D.scatter(SePCG,PWR, -1, c='b', marker='s')
en2D.plot(SePCG,PWR,'bs')
# -----------------------------------------------------------------------------
if i>=10 and i<=99:
# Looking for heart sounds data absolute path
l = path.replace("001", "0%i"%i)
l = os.path.abspath(l)
l = l.replace('\\','/')
matrix_path.append(l)
# ---------------------------------------------------------------------
# Reading file
Fs, data = wf.read(l)
# ---------------------------------------------------------------------
# Getting features ... Replace or add more feature extraccion algorithms
PWR, SePCG =ppf.features_1(data,Fs)
# ---------------------------------------------------------------------
# Plotting features
if ref.iloc[(i-1),1] == 1:
en3D.scatter(SePCG,PWR, 1, c='r', marker='o')
en2D.plot(SePCG,PWR,'ro')
else:
en3D.scatter(SePCG,PWR, -1, c='b', marker='s')
en2D.plot(SePCG,PWR,'bs')
# -----------------------------------------------------------------------------
if i>=100 and i<=999:
# Looking for heart sounds data absolute path
l = path.replace("0001", "0%i"%i)
l = os.path.abspath(l)
l = l.replace('\\','/')
matrix_path.append(l)
# ---------------------------------------------------------------------
# Reading file
Fs, data = wf.read(l)
# ---------------------------------------------------------------------
# Getting features ... Replace or add more feature extraccion algorithms
PWR, SePCG =ppf.features_1(data,Fs)
# ---------------------------------------------------------------------
# Plotting features
if ref.iloc[(i-1),1] == 1:
en3D.scatter(SePCG,PWR, 1, c='r', marker='o')
en2D.plot(SePCG,PWR,'ro')
else:
en3D.scatter(SePCG,PWR, -1, c='b', marker='s')
en2D.plot(SePCG,PWR,'bs')
# -----------------------------------------------------------------------------