-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFilter_WeeklyEvents.m
227 lines (176 loc) · 8.16 KB
/
Filter_WeeklyEvents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
% Select training data for machine learning algorithms
% use parameters to change the training data and patients chosen
%% (optional) load AllPatients
% load AllPatients;
% otherwise, first run Create_AllPatients.m
%% Parameters
% number of sesssions that a patient should have for analysis
CO_Daily = 0;
CO_Weekly = 0;
PeakFlowDaily = 2;
daysBeforeEvent = 14; % selecting initial blocks
daysAfterEvent = 14; % can try [3,14] % will not use these data for training classifier
maxBlockSize = 14; % for resizing and grouping blocks together
addSI_Freq = true; % add SI and Freq to predictors list
% choose from peakflowNorm,quick_relief_puffs,TriggerNumber
% day_symptoms,night_symptoms,randomNoise,medicine,use_qr
predictors = {'peakflowNorm','quick_relief_puffs','TriggerNumberNorm',...
'day_symptoms','night_symptoms','medicine','randomNoise'};
% choose from grad, r2, middle, gradAbs
extentions = {'grad','r2', 'middle','gradAbs'};
%% Select patients
IP = find((AllPatients.WeeklySurveySize > CO_Weekly)...
& (AllPatients.DailySurveySize > CO_Daily)...
& (AllPatients.PeakFlowSize > PeakFlowDaily));
IP_peakflow = IP;
counter = 0;
% identify the patients who had an undesirable event (admission, doc visit,
% or emergency)
SelectedPatients = [];
for kp=1:length(IP)
SI=IP(kp); % selected patient
if(~isempty(find(AllPatients.WeeklySurvey{SI}.emergency_room == 'true', 1))...
|| (~isempty(find(AllPatients.WeeklySurvey{SI}.asthma_doc_visit == 'true', 1)))...
|| (~isempty(find(AllPatients.WeeklySurvey{SI}.admission == 'true', 1))))
counter = counter + 1;
SelectedPatients = [SelectedPatients;SI];
end
end
%% For all patient
tic
for patientnumber = 1:length(IP)
disp(['Patient number ',num2str(patientnumber)])
SI = IP(patientnumber);
pdata=AllPatients.DailySurvey{SI};
pdata_week = AllPatients.WeeklySurvey{SI};
% identify when event happened
EventWeek = [];
counter = 0;
for kp = 1:height(pdata_week)
if(pdata_week.emergency_room(kp) == 'true')...
|| (pdata_week.asthma_doc_visit(kp) == 'true')...
|| (pdata_week.admission(kp) == 'true')
day = pdata_week.createdOn(kp);
EventWeek = [EventWeek;day];
end
end
% group 1 week of daily prompt data
% and classify stable unstable
pdata.Date=Convert_datetime(pdata.createdOn);
pdata.weekNum = strings(height(pdata),1);
pdata.nextEvent = max(pdata.Date)+daysBeforeEvent+daysAfterEvent+zeros(height(pdata),1);
pdata.prevEvent = min(pdata.Date)-daysBeforeEvent+zeros(height(pdata),1);
for kd=1:height(pdata)
pdata.eventWeekNum(kd) = sum(pdata.createdOn(kd) < EventWeek);
% create week number based on weekly prompt
pdata.weekNumWP(kd) = sum(pdata.createdOn(kd) < pdata_week.createdOn);
% create week number based on calandar
pdata.weekNumCal(kd) = week(pdata.Date(kd));
if pdata.eventWeekNum(kd) ~= 0
pdata.nextEvent(kd) = Convert_datetime(EventWeek(1+length(EventWeek)-pdata.eventWeekNum(kd)));
end
if length(EventWeek)-pdata.eventWeekNum(kd) > 0
pdata.prevEvent(kd) = Convert_datetime(EventWeek(length(EventWeek)-pdata.eventWeekNum(kd)));
end
end
% flip weekNumWP and eventWeekNum
pdata.weekNumWP = 1 + max(pdata.weekNumWP) - pdata.weekNumWP;
pdata.eventWeekNum = 1 + max(pdata.eventWeekNum) - pdata.eventWeekNum;
% stable if more than (14) daysAfterEvent
% and more than (14) days before nextEvent
% and after event
pdata.Stable = ((pdata.nextEvent - daysBeforeEvent > pdata.Date)&...
(pdata.prevEvent + daysAfterEvent <= pdata.Date));
% data just after events will not be used in training data
pdata.justAfterEvent = (pdata.prevEvent+daysAfterEvent>pdata.Date)&...
(~(abs(pdata.prevEvent-pdata.Date)<0.5));
disp('Column Stable added')
for kd=1:height(pdata)
% make string weekNum Calandar_WP_stable
% pdata.weekNum(kd) = num2str(pdata.weekNumCal(kd))+...
% "_"+num2str(pdata.weekNumWP(kd))+"_"+num2str(pdata.Stable(kd));
% make string weekNum WP_Stable_Calandar
pdata.weekNum(kd) = num2str(pdata.weekNumWP(kd))+...
"_"+num2str(pdata.Stable(kd))+"_"+num2str(pdata.weekNumCal(kd));
end
% normalised PEF values and reported trigger number to maximum of patient
% normalised as batch, take max over all pdata
pdata.peakflowNorm = pdata.peakflow/max(pdata.peakflow);
pdata.TriggerNumberNorm = pdata.TriggerNumber/max(pdata.TriggerNumber);
% set 4 medicine to nan
pdata.medicine(pdata.medicine==4)=nan;
% set NaN quick_relief_puffs to zero
pdata.quick_relief_puffs(isnan(pdata.quick_relief_puffs)) = zeros(sum(isnan(pdata.quick_relief_puffs)),1);
% make a random number feature
pdata.randomNoise = rand(height(pdata),1);
% trainDataFull is to be summarised to trainData
trainDataFull = pdata(~pdata.justAfterEvent,[{'weekNum','createdOn','Stable'}, predictors]);
disp('train data selected')
% create block number, a block a some nearby weeks put together
% Linear fit summary of training data
% if the weekly prompt number is within 1, they may also combine
[WN,weekNum] = findgroups(trainDataFull.weekNum);
weeks = table(weekNum);
weeks.Freq = splitapply(@length,trainDataFull.Stable,WN);
weeks.createdOn = splitapply(@max,trainDataFull.createdOn,WN);
[keySet, valueSet] = Alg_bin_pack(weeks.weekNum, weeks.Freq, maxBlockSize);
% keySet = weeks.weekNum;
% valueSet = weeks.block;
weekNum_block_map = containers.Map(keySet,valueSet);
for kd=1:height(trainDataFull)
trainDataFull.block(kd) = weekNum_block_map(trainDataFull.weekNum(kd));
end
[B,block] = findgroups(trainDataFull.block);
trainData = table(block);
trainData.SI = SI+zeros(height(trainData),1);
% summarise over each block
for i=1:length(predictors)
% loop over variables used for model
% column = trainDataFull.Properties.VariableNames{3+i}; % 3 other info
column = predictors{i};
%tried /10^12 no significant effect
DT = table(trainDataFull.createdOn, trainDataFull{:,column});
table_func = @(dates,values)Convert_summary_gradient(dates, values);
% add to training data
[grad, r2, middle]=splitapply(table_func,DT,B);
gradAbs = abs(grad);
T = table(grad,r2, middle,gradAbs);
for ep = 1:length(extentions)
trainData = [trainData T(:,extentions{ep})];
varName = [column, extentions{ep}];
trainData.Properties.VariableNames{end} = varName;
end
end
trainData.Stable = (splitapply(@mean,trainDataFull.Stable,B)>0.5);
trainData.Freq = splitapply(@length,trainDataFull.Stable,B);
disp('train data summarised')
% make table of all patients training data
if patientnumber==1
trainDataAll = trainData;
else
trainDataAll = [trainDataAll; trainData];
end
end
clc;
disp('trainDataAll formed')
toc
disp(['total training data: ',num2str(length(trainDataAll.Stable))])
disp(['total training data (Stable): ',num2str(sum(trainDataAll.Stable))])
disp(['mean data points in each block (Stable): ',num2str(mean(trainDataAll.Freq(trainDataAll.Stable)))])
disp(['total training data (Unstable): ',num2str(sum(~trainDataAll.Stable))])
disp(['mean data points in each block (Unstable): ',num2str(mean(trainDataAll.Freq(~trainDataAll.Stable)))])
figure
histogram(trainDataAll.Freq, 'NumBins', 50)
title("Histogram of data points in each block")
%% Predictor
% preds = ismember(trainDataAll.Properties.VariableNames,predictors);
% contains chooses all predictors with their extensions
predictors2 = predictors;
if addSI_Freq
predictors2 = [{'SI','Freq'}, predictors2]; % add SI and Freq into the model
end
preds = contains(trainDataAll.Properties.VariableNames,predictors2);
X = trainDataAll{:,preds};
Y = trainDataAll.Stable;
X_names = trainDataAll.Properties.VariableNames(preds);
save trainingData X Y X_names IP IP_peakflow