forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_evaluate.py
346 lines (289 loc) Β· 14.5 KB
/
embedding_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from paddlenlp.transformers import AutoConfig, AutoModel, AutoTokenizer
class Embedding_Evaluation:
def __init__(
self,
model_path,
tokenizer_path,
query_pos_passage_path,
neg_passage_path,
template="{text}",
dimension=1024,
max_src_len=8192,
normalize=True,
dtype=None,
):
# initialize the tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
padding_side="right",
truncation_side="right",
)
self.config = AutoConfig.from_pretrained(model_path)
self.config.embedding_negatives_cross_device = False
self.dtype = dtype if dtype else self.config.dtype
# Initialize the distributed environment
dist.init_parallel_env()
world_size = dist.get_world_size()
if world_size > 1:
print(f"Running in multi-GPU mode with {world_size} GPUs.")
else:
print("Running in single-GPU or CPU mode.")
# Initialize the embedding model
self.model = AutoModel.from_pretrained(
model_path, config=self.config, dtype=self.dtype, low_cpu_mem_usage=False
)
self.model.eval()
self.query_pos_passage_path = query_pos_passage_path
self.neg_passage_path = neg_passage_path
self.template = template
self.dimension = dimension
self.max_src_len = max_src_len
self.normalize = normalize
def _preprocess(self, texts):
"""Pre-process inputs."""
template_prefix, template_suffix = self.template.split("{text}")
prefix_tokens = self.tokenizer(template_prefix, add_special_tokens=False).input_ids
suffix_tokens = self.tokenizer(template_suffix, add_special_tokens=False).input_ids
# If the template does not contain a suffix token, add the EOS token
if len(suffix_tokens) == 0:
suffix_tokens = [self.tokenizer.eos_token_id]
# If the template does not contain a prefix token, add the BOS token
if len(prefix_tokens) == 0:
prefix_tokens = [self.tokenizer.bos_token_id]
available_len = self.max_src_len - len(prefix_tokens) - len(suffix_tokens)
truncated_token_ids = self._batch_truncate_and_tokenize(texts, available_len)
complete_token_ids = [prefix_tokens + tid + suffix_tokens for tid in truncated_token_ids]
position_ids = [list(range(len(cid))) for cid in complete_token_ids]
max_len = max([len(cid) for cid in complete_token_ids])
embedding_indices = [[idx, len(cid) - 1] for idx, cid in enumerate(complete_token_ids)]
inputs = self.tokenizer.pad(
{
"input_ids": complete_token_ids,
"position_ids": position_ids,
"embedding_indices": embedding_indices,
},
padding="max_length",
return_attention_mask=True,
max_length=max_len,
return_tensors="pd",
)
return inputs
def _batch_truncate_and_tokenize(self, texts, available_len):
"""Tokenize the batch of texts."""
batch_tokenized = self.tokenizer(
texts, add_special_tokens=False, padding=False, truncation=True, max_length=available_len
)
truncated_token_ids = [token_ids for token_ids in batch_tokenized["input_ids"]]
return truncated_token_ids
def _forward(self, inputs, dimension):
"""Run model forward."""
input_type = type(inputs["input_ids"])
outputs = self.model(**inputs)
if isinstance(outputs, input_type):
hidden_states = outputs
else:
hidden_states = outputs[0]
last_hidden_state = hidden_states[:, 0]
if dimension > self.config.hidden_size:
raise ValueError(
f"Dimension ({dimension}) cannot be greater than hidden_size ({self.config.hidden_size})."
)
elif dimension != self.config.hidden_size:
last_hidden_state = last_hidden_state[:, :dimension]
if self.normalize:
last_hidden_state = paddle.nn.functional.normalize(last_hidden_state, axis=-1)
last_hidden_state = last_hidden_state.astype("float16").tolist()
return last_hidden_state
@paddle.no_grad()
def get_embedding(self, texts, dimension=None):
"""Get inference sequence."""
if dimension is None:
dimension = self.dimension
inputs = self._preprocess(texts)
if self.config.model_type in ["xlm-roberta"]:
del inputs["embedding_indices"]
del inputs["position_ids"]
outputs = self._forward(inputs, dimension)
return outputs
def evaluate(self):
query_data_list = []
pos_passage_data_list = []
with open(self.query_pos_passage_path, "r") as f:
for line in f:
single_data = json.loads(line)
query_data_list.append(single_data["query"])
pos_passage_data_list.append(single_data["pos_passage"][0])
neg_passage_data_list = []
with open(self.neg_passage_path, "r") as f:
for line in f:
single_data = json.loads(line)
neg_passage_data_list.append(single_data["neg_passage"][0])
passage_data_list = pos_passage_data_list + neg_passage_data_list
world_size = paddle.distributed.get_world_size()
rank = paddle.distributed.get_rank()
query_chunk_size = len(query_data_list) // world_size
passage_chunk_size = len(passage_data_list) // world_size
if rank == world_size - 1:
# The last process handles the remaining data
query_data_chunk = query_data_list[rank * query_chunk_size :]
passage_data_chunk = passage_data_list[rank * passage_chunk_size :]
else:
query_data_chunk = query_data_list[rank * query_chunk_size : (rank + 1) * query_chunk_size]
passage_data_chunk = passage_data_list[rank * passage_chunk_size : (rank + 1) * passage_chunk_size]
batch_size = 4 # Adjust batch size according to your hardware and needs
local_p_vecs = []
local_q_vecs = []
# Use tqdm to iterate over query_data_chunk and get embeddings in batches
for batch in tqdm(range(0, len(passage_data_chunk), batch_size), desc="Processing passage embeddings"):
batch_start = batch
batch_end = min(batch_start + batch_size, len(passage_data_chunk))
batch_texts = passage_data_chunk[batch_start:batch_end]
# Call get_embedding to obtain embeddings for the current batch
batch_embeddings = self.get_embedding(batch_texts)
local_p_vecs.extend(batch_embeddings)
for batch in tqdm(range(0, len(query_data_chunk), batch_size), desc="Processing query embeddings"):
batch_start = batch
batch_end = min(batch_start + batch_size, len(query_data_chunk))
batch_texts = query_data_chunk[batch_start:batch_end]
batch_embeddings = self.get_embedding(batch_texts)
local_q_vecs.extend(batch_embeddings)
local_p_vecs_file = f"local_p_vecs_rank_{rank}.npy"
local_q_vecs_file = f"local_q_vecs_rank_{rank}.npy"
np.save(local_p_vecs_file, local_p_vecs)
np.save(local_q_vecs_file, local_q_vecs)
dist.barrier() # Ensure all cards have reached this point before continuing
if rank == 0:
all_p_vecs_list = []
all_q_vecs_list = []
world_size = paddle.distributed.get_world_size()
for i in range(world_size):
local_p_vecs_file = f"local_p_vecs_rank_{i}.npy"
local_q_vecs_file = f"local_q_vecs_rank_{i}.npy"
# Load the embedding vector file from each process
local_p_vecs = np.load(local_p_vecs_file)
local_q_vecs = np.load(local_q_vecs_file)
all_p_vecs_list.append(local_p_vecs)
all_q_vecs_list.append(local_q_vecs)
all_q_vecs = []
for q_vecs in all_q_vecs_list:
all_q_vecs.extend(q_vecs)
q_vecs = np.asarray(all_q_vecs, dtype=np.float32)
all_p_vecs = []
for p_vecs in all_p_vecs_list:
all_p_vecs.extend(p_vecs)
p_vecs = np.asarray(all_p_vecs, dtype=np.float32)
query_embedding_tensor = paddle.to_tensor(q_vecs, dtype=self.dtype)
passage_embedding_tensor = paddle.to_tensor(p_vecs, dtype=self.dtype)
similarity_matrix = self.calculate_cosine_similarity_matrix(
query_embedding_tensor, passage_embedding_tensor
)
query_num = len(query_data_list)
true_answers = [i for i in range(query_num)]
hit_count_10, hit_coun_5, hit_count_3, hit_count_1 = 0, 0, 0, 0
reciprocal_rank_sum_10, reciprocal_rank_sum_5, reciprocal_rank_sum_3 = 0, 0, 0
ndcg_10, ndcg_5, ndcg_3 = 0.0, 0.0, 0.0
for i in range(query_num):
similarities = similarity_matrix[i]
# get the sorted indices
sorted_indices = paddle.argsort(-similarities)
# find the index of the true answer
true_answer_index = true_answers[i]
rank = paddle.where(sorted_indices == true_answer_index)[0][0] + 1 # rank starts from 1
if rank <= 10:
hit_count_10 += 1
reciprocal_rank_sum_10 += 1.0 / rank
if rank <= 5:
hit_coun_5 += 1
reciprocal_rank_sum_5 += 1.0 / rank
if rank <= 3:
hit_count_3 += 1
reciprocal_rank_sum_3 += 1.0 / rank
if rank <= 1:
hit_count_1 += 1
relevance_scores = [0] * 10
if rank <= 10:
relevance_scores[rank - 1] = 1
ndcg_10 += self.calculate_ndcg(relevance_scores[:10], k=10)
ndcg_5 += self.calculate_ndcg(relevance_scores[:5], k=5)
ndcg_3 += self.calculate_ndcg(relevance_scores[:3], k=3)
print(f"Hit rate when recall Top 10: ({hit_count_10*100./query_num:.2f}%)\n")
print(f"Hit rate when recall Top 5: ({hit_coun_5*100./query_num:.2f}%)\n")
print(f"Hit rate when recall Top 3: ({hit_count_3*100./query_num:.2f}%)\n")
print(f"Hit rate when recall Top 1: ({hit_count_1*100./query_num:.2f}%)\n")
print(f"MRR when recall Top 10: ({reciprocal_rank_sum_10.item() / query_num:.4f})\n")
print(f"MRR when recall Top 5: ({reciprocal_rank_sum_5.item() / query_num:.4f})\n")
print(f"MRR when recall Top 3: ({reciprocal_rank_sum_3.item() / query_num:.4f})\n")
print(f"NDCG@10: ({ndcg_10/ query_num:.4f})\n")
print(f"NDCG@5: ({ndcg_5/ query_num:.4f})\n")
print(f"NDCG@3: ({ndcg_3/ query_num:.4f})\n")
eval_result_dict = {
"hit_rate@10": hit_count_10 / query_num,
"hit_rate@5": hit_coun_5 / query_num,
"hit_rate@3": hit_count_3 / query_num,
"hit_rate@1": hit_count_1 / query_num,
"mrr@10": reciprocal_rank_sum_10.item() / query_num,
"mrr@5": reciprocal_rank_sum_5.item() / query_num,
"mrr@3": reciprocal_rank_sum_3.item() / query_num,
"ndcg@10": ndcg_10 / query_num,
"ndcg@5": ndcg_5 / query_num,
"ndcg@3": ndcg_3 / query_num,
}
return eval_result_dict
def calculate_cosine_similarity_matrix(self, query_matrix, answer_matrix):
"""Calculate the cosine similarity between two matrices by processing query vectors one by one."""
num_queries = query_matrix.shape[0]
num_answers = answer_matrix.shape[0]
# Precompute the norms of answer vectors to save computation
answer_norms = paddle.linalg.norm(answer_matrix, axis=1, keepdim=True)
# Initialize the similarity matrix with zeros
similarity_matrix = paddle.zeros((num_queries, num_answers))
# Process each query vector one by one
for i in tqdm(range(num_queries)):
query_vector = query_matrix[i : i + 1] # Extract the i-th query vector
# Calculate the norm of the query vector
query_norm = paddle.linalg.norm(query_vector, axis=1, keepdim=True)
# Calculate the dot product between the query vector and all answer vectors
dot_product = paddle.matmul(query_vector, answer_matrix, transpose_y=True)
# Calculate the cosine similarity for the i-th query vector
similarity_vector = dot_product / (query_norm * answer_norms.transpose((1, 0)))
# Update the similarity matrix with the computed similarity vector
similarity_matrix[i] = similarity_vector
return similarity_matrix
def calculate_ndcg(self, relevance_scores, k):
"""Calculate NDCG@k for a given set of relevance scores"""
# Calculate DCG
dcg = sum((rel) / np.log2(i + 2) for i, rel in enumerate(relevance_scores[:k]))
# Calculate IDCG (Ideal DCG)
ideal_relevance_scores = sorted(relevance_scores, reverse=True)
idcg = sum((rel) / np.log2(i + 2) for i, rel in enumerate(ideal_relevance_scores[:k]))
# Avoid division by zero
if idcg == 0:
return 0.0
# Calculate NDCG
ndcg = dcg / idcg
return ndcg
if __name__ == "__main__":
model_path = "BAAI/bge-m3"
tokenizer_path = "BAAI/bge-m3"
query_pos_passage_path = "./toy_data/toy_dev.json"
neg_passage_path = "./toy_data/toy_dev_neg.json"
eval = Embedding_Evaluation(model_path, tokenizer_path, query_pos_passage_path, neg_passage_path)
print(eval.evaluate())