-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add 2024-08-20-finite-domain-terminology.md
- Loading branch information
Showing
2 changed files
with
47 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
#zkp #math | ||
|
||
## Finite Domain Terminology | ||
|
||
**群**:具有封闭==加法运算==的集合称为群 | ||
**环**:在群的基础上,添加一种==乘法运算==。但每个元素不一定有乘法逆元。 | ||
**域**:在环的基础上,要求每个元素都有乘法逆元。等于加法群和乘法群 | ||
|
||
**常见的域**:$Q$ 有理数;$Z$ 整数;$Z^+$ 正整数;$N$ 非负整数;$N^+$ 正整数;$R$ 实数 | ||
|
||
**群的定义**:只有一个运算的、简单的代数结构(代数结构是指具有一个以及以上运算的非空集合),由 一个集合 $\mathbb{G}$ 和一个二元操作构成,满足以下四个性质: ^1c64a8 | ||
1. **封闭性**:如果 $a, b \in \mathbb{G}$,则 $a \cdot b \in \mathbb{G}$ | ||
2. **结合律**:$(a \cdot b) \cdot c = a \cdot (b \cdot c)$ | ||
3. **单位元 $I$**:存在一个元素使得 $a \cdot I = I \cdot a = a$ | ||
4. **逆元**:每个元素 $a$ 都有逆元 $a^{-1}$ 使得 $a \cdot a^{-1} = e$ | ||
|
||
**阿贝尔群(Abelian Group)**:又称交换群,额外满足一个性质: | ||
5. **交换律**:$a \cdot b = b \cdot a$ | ||
|
||
**循环群(Cyclic Group)**:循环群都是阿贝尔群,还额外满足一个性质: | ||
6. **生成元**:存在一个元素 $g$,能够通过 **有限次的本身运算** 表达出其它所有元素。一般用 $g^x$ 表达生成元 $g$ 经过 $x$ 次自身运算得到的结果。 | ||
|
||
群的举例: | ||
- $G = \set{0, 1}$, 除法运算 $\div$。不满足封闭性,比如 $1 \div 0 \notin G$,所以不是群。 | ||
- $G = \set{0, 1, 2, 3, 4}$,加法再模5运算 $(x + y) \mod 5$。这是一个满足条件的加法群,单位元为 0,生成元 $\set{1, 2, 3, 4}$。 | ||
- $G = \set{0, 1, 2, 3, 4, 5, 6}$,乘法再模7运算 $(x + y) \mod 7$。这是一个满足条件的乘法群,单位元为 0,生成元 $\set{3, 5}$。 | ||
|
||
**常见的群**:密码学中常见的群是素数群、椭圆曲线群,只是计算的速度不一样。要达到相同的安全性,所需要的私钥位宽不一样。 | ||
|
||
**环的定义**:由一个集合和两个二元操作构成,满足以下性质: | ||
1. **加法结合律**:$(a + b) + c = a + (b + c)$ | ||
2. **加法交换律**:$a + b = b + a$ | ||
3. **加法单位元**:$a + I = I + a = a$ | ||
4. **加法逆元**:$a + (-a) = I$ | ||
5. **乘法结合律**:$(a * b) * c = a * (b * c)$ | ||
6. **分配律**:$a * (b + c) = (a * b) + (a * c)$ | ||
可以看出,**环** 在加法操作下是个 **阿贝尔群**。 | ||
|
||
**域的定义**:域,是一个集合,满足加法和乘法的结合律、交换律、分配律、单位元和逆元共五个性质。 | ||
|
||
**伽罗瓦域**:有限域 | ||
|
||
### See Also | ||
|
||
- [密码学03|群和公钥加密_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1KG4y1G7ZB/?spm_id_from=333.880.my_history.page.click&vd_source=b7d8f4fe7d99d7045075d9b1f350612b) | ||
- [密码学04|Hacker Dōjo 数字签名与KZG承诺_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV17e411N7Jm/?spm_id_from=333.999.0.0&vd_source=b7d8f4fe7d99d7045075d9b1f350612b) |