diff --git a/MAINTAINERS b/MAINTAINERS index 3864d473f52f2..b0179ef867eb7 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -4297,6 +4297,9 @@ F: include/uapi/linux/filter.h F: kernel/bpf/ F: kernel/trace/bpf_trace.c F: lib/buildid.c +F: arch/*/include/asm/rqspinlock.h +F: include/asm-generic/rqspinlock.h +F: kernel/locking/rqspinlock.c F: lib/test_bpf.c F: net/bpf/ F: net/core/filter.c diff --git a/arch/arm64/include/asm/rqspinlock.h b/arch/arm64/include/asm/rqspinlock.h new file mode 100644 index 0000000000000..5b80785324b6c --- /dev/null +++ b/arch/arm64/include/asm/rqspinlock.h @@ -0,0 +1,93 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _ASM_RQSPINLOCK_H +#define _ASM_RQSPINLOCK_H + +#include + +/* + * Hardcode res_smp_cond_load_acquire implementations for arm64 to a custom + * version based on [0]. In rqspinlock code, our conditional expression involves + * checking the value _and_ additionally a timeout. However, on arm64, the + * WFE-based implementation may never spin again if no stores occur to the + * locked byte in the lock word. As such, we may be stuck forever if + * event-stream based unblocking is not available on the platform for WFE spin + * loops (arch_timer_evtstrm_available). + * + * Once support for smp_cond_load_acquire_timewait [0] lands, we can drop this + * copy-paste. + * + * While we rely on the implementation to amortize the cost of sampling + * cond_expr for us, it will not happen when event stream support is + * unavailable, time_expr check is amortized. This is not the common case, and + * it would be difficult to fit our logic in the time_expr_ns >= time_limit_ns + * comparison, hence just let it be. In case of event-stream, the loop is woken + * up at microsecond granularity. + * + * [0]: https://lore.kernel.org/lkml/20250203214911.898276-1-ankur.a.arora@oracle.com + */ + +#ifndef smp_cond_load_acquire_timewait + +#define smp_cond_time_check_count 200 + +#define __smp_cond_load_relaxed_spinwait(ptr, cond_expr, time_expr_ns, \ + time_limit_ns) ({ \ + typeof(ptr) __PTR = (ptr); \ + __unqual_scalar_typeof(*ptr) VAL; \ + unsigned int __count = 0; \ + for (;;) { \ + VAL = READ_ONCE(*__PTR); \ + if (cond_expr) \ + break; \ + cpu_relax(); \ + if (__count++ < smp_cond_time_check_count) \ + continue; \ + if ((time_expr_ns) >= (time_limit_ns)) \ + break; \ + __count = 0; \ + } \ + (typeof(*ptr))VAL; \ +}) + +#define __smp_cond_load_acquire_timewait(ptr, cond_expr, \ + time_expr_ns, time_limit_ns) \ +({ \ + typeof(ptr) __PTR = (ptr); \ + __unqual_scalar_typeof(*ptr) VAL; \ + for (;;) { \ + VAL = smp_load_acquire(__PTR); \ + if (cond_expr) \ + break; \ + __cmpwait_relaxed(__PTR, VAL); \ + if ((time_expr_ns) >= (time_limit_ns)) \ + break; \ + } \ + (typeof(*ptr))VAL; \ +}) + +#define smp_cond_load_acquire_timewait(ptr, cond_expr, \ + time_expr_ns, time_limit_ns) \ +({ \ + __unqual_scalar_typeof(*ptr) _val; \ + int __wfe = arch_timer_evtstrm_available(); \ + \ + if (likely(__wfe)) { \ + _val = __smp_cond_load_acquire_timewait(ptr, cond_expr, \ + time_expr_ns, \ + time_limit_ns); \ + } else { \ + _val = __smp_cond_load_relaxed_spinwait(ptr, cond_expr, \ + time_expr_ns, \ + time_limit_ns); \ + smp_acquire__after_ctrl_dep(); \ + } \ + (typeof(*ptr))_val; \ +}) + +#endif + +#define res_smp_cond_load_acquire_timewait(v, c) smp_cond_load_acquire_timewait(v, c, 0, 1) + +#include + +#endif /* _ASM_RQSPINLOCK_H */ diff --git a/arch/x86/include/asm/rqspinlock.h b/arch/x86/include/asm/rqspinlock.h new file mode 100644 index 0000000000000..24a885449ee6a --- /dev/null +++ b/arch/x86/include/asm/rqspinlock.h @@ -0,0 +1,33 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _ASM_X86_RQSPINLOCK_H +#define _ASM_X86_RQSPINLOCK_H + +#include + +#ifdef CONFIG_PARAVIRT +DECLARE_STATIC_KEY_FALSE(virt_spin_lock_key); + +#define resilient_virt_spin_lock_enabled resilient_virt_spin_lock_enabled +static __always_inline bool resilient_virt_spin_lock_enabled(void) +{ + return static_branch_likely(&virt_spin_lock_key); +} + +#ifdef CONFIG_QUEUED_SPINLOCKS +typedef struct qspinlock rqspinlock_t; +#else +typedef struct rqspinlock rqspinlock_t; +#endif +extern int resilient_tas_spin_lock(rqspinlock_t *lock); + +#define resilient_virt_spin_lock resilient_virt_spin_lock +static inline int resilient_virt_spin_lock(rqspinlock_t *lock) +{ + return resilient_tas_spin_lock(lock); +} + +#endif /* CONFIG_PARAVIRT */ + +#include + +#endif /* _ASM_X86_RQSPINLOCK_H */ diff --git a/include/asm-generic/Kbuild b/include/asm-generic/Kbuild index 1b43c3a77012d..8675b7b4ad23e 100644 --- a/include/asm-generic/Kbuild +++ b/include/asm-generic/Kbuild @@ -45,6 +45,7 @@ mandatory-y += pci.h mandatory-y += percpu.h mandatory-y += pgalloc.h mandatory-y += preempt.h +mandatory-y += rqspinlock.h mandatory-y += runtime-const.h mandatory-y += rwonce.h mandatory-y += sections.h diff --git a/include/asm-generic/mcs_spinlock.h b/include/asm-generic/mcs_spinlock.h index 10cd4ffc6ba29..39c94012b88a8 100644 --- a/include/asm-generic/mcs_spinlock.h +++ b/include/asm-generic/mcs_spinlock.h @@ -1,6 +1,12 @@ #ifndef __ASM_MCS_SPINLOCK_H #define __ASM_MCS_SPINLOCK_H +struct mcs_spinlock { + struct mcs_spinlock *next; + int locked; /* 1 if lock acquired */ + int count; /* nesting count, see qspinlock.c */ +}; + /* * Architectures can define their own: * diff --git a/include/asm-generic/rqspinlock.h b/include/asm-generic/rqspinlock.h new file mode 100644 index 0000000000000..06906489d9bad --- /dev/null +++ b/include/asm-generic/rqspinlock.h @@ -0,0 +1,245 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Resilient Queued Spin Lock + * + * (C) Copyright 2024 Meta Platforms, Inc. and affiliates. + * + * Authors: Kumar Kartikeya Dwivedi + */ +#ifndef __ASM_GENERIC_RQSPINLOCK_H +#define __ASM_GENERIC_RQSPINLOCK_H + +#include +#include +#include +#ifdef CONFIG_QUEUED_SPINLOCKS +#include +#endif + +struct rqspinlock { + union { + atomic_t val; + u32 locked; + }; +}; + +/* Even though this is same as struct rqspinlock, we need to emit a distinct + * type in BTF for BPF programs. + */ +struct bpf_res_spin_lock { + u32 val; +}; + +struct qspinlock; +#ifdef CONFIG_QUEUED_SPINLOCKS +typedef struct qspinlock rqspinlock_t; +#else +typedef struct rqspinlock rqspinlock_t; +#endif + +extern int resilient_tas_spin_lock(rqspinlock_t *lock); +#ifdef CONFIG_QUEUED_SPINLOCKS +extern int resilient_queued_spin_lock_slowpath(rqspinlock_t *lock, u32 val); +#endif + +#ifndef resilient_virt_spin_lock_enabled +static __always_inline bool resilient_virt_spin_lock_enabled(void) +{ + return false; +} +#endif + +#ifndef resilient_virt_spin_lock +static __always_inline int resilient_virt_spin_lock(rqspinlock_t *lock) +{ + return 0; +} +#endif + +/* + * Default timeout for waiting loops is 0.25 seconds + */ +#define RES_DEF_TIMEOUT (NSEC_PER_SEC / 4) + +/* + * Choose 31 as it makes rqspinlock_held cacheline-aligned. + */ +#define RES_NR_HELD 31 + +struct rqspinlock_held { + int cnt; + void *locks[RES_NR_HELD]; +}; + +DECLARE_PER_CPU_ALIGNED(struct rqspinlock_held, rqspinlock_held_locks); + +static __always_inline void grab_held_lock_entry(void *lock) +{ + int cnt = this_cpu_inc_return(rqspinlock_held_locks.cnt); + + if (unlikely(cnt > RES_NR_HELD)) { + /* Still keep the inc so we decrement later. */ + return; + } + + /* + * Implied compiler barrier in per-CPU operations; otherwise we can have + * the compiler reorder inc with write to table, allowing interrupts to + * overwrite and erase our write to the table (as on interrupt exit it + * will be reset to NULL). + * + * It is fine for cnt inc to be reordered wrt remote readers though, + * they won't observe our entry until the cnt update is visible, that's + * all. + */ + this_cpu_write(rqspinlock_held_locks.locks[cnt - 1], lock); +} + +/* + * We simply don't support out-of-order unlocks, and keep the logic simple here. + * The verifier prevents BPF programs from unlocking out-of-order, and the same + * holds for in-kernel users. + * + * It is possible to run into misdetection scenarios of AA deadlocks on the same + * CPU, and missed ABBA deadlocks on remote CPUs if this function pops entries + * out of order (due to lock A, lock B, unlock A, unlock B) pattern. The correct + * logic to preserve right entries in the table would be to walk the array of + * held locks and swap and clear out-of-order entries, but that's too + * complicated and we don't have a compelling use case for out of order unlocking. + */ +static __always_inline void release_held_lock_entry(void) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + + if (unlikely(rqh->cnt > RES_NR_HELD)) + goto dec; + WRITE_ONCE(rqh->locks[rqh->cnt - 1], NULL); +dec: + /* + * Reordering of clearing above with inc and its write in + * grab_held_lock_entry that came before us (in same acquisition + * attempt) is ok, we either see a valid entry or NULL when it's + * visible. + * + * But this helper is invoked when we unwind upon failing to acquire the + * lock. Unlike the unlock path which constitutes a release store after + * we clear the entry, we need to emit a write barrier here. Otherwise, + * we may have a situation as follows: + * + * for lock B + * release_held_lock_entry + * + * try_cmpxchg_acquire for lock A + * grab_held_lock_entry + * + * Lack of any ordering means reordering may occur such that dec, inc + * are done before entry is overwritten. This permits a remote lock + * holder of lock B (which this CPU failed to acquire) to now observe it + * as being attempted on this CPU, and may lead to misdetection (if this + * CPU holds a lock it is attempting to acquire, leading to false ABBA + * diagnosis). + * + * In case of unlock, we will always do a release on the lock word after + * releasing the entry, ensuring that other CPUs cannot hold the lock + * (and make conclusions about deadlocks) until the entry has been + * cleared on the local CPU, preventing any anomalies. Reordering is + * still possible there, but a remote CPU cannot observe a lock in our + * table which it is already holding, since visibility entails our + * release store for the said lock has not retired. + * + * In theory we don't have a problem if the dec and WRITE_ONCE above get + * reordered with each other, we either notice an empty NULL entry on + * top (if dec succeeds WRITE_ONCE), or a potentially stale entry which + * cannot be observed (if dec precedes WRITE_ONCE). + * + * Emit the write barrier _before_ the dec, this permits dec-inc + * reordering but that is harmless as we'd have new entry set to NULL + * already, i.e. they cannot precede the NULL store above. + */ + smp_wmb(); + this_cpu_dec(rqspinlock_held_locks.cnt); +} + +#ifdef CONFIG_QUEUED_SPINLOCKS + +/** + * res_spin_lock - acquire a queued spinlock + * @lock: Pointer to queued spinlock structure + */ +static __always_inline int res_spin_lock(rqspinlock_t *lock) +{ + int val = 0; + + if (likely(atomic_try_cmpxchg_acquire(&lock->val, &val, _Q_LOCKED_VAL))) { + grab_held_lock_entry(lock); + return 0; + } + return resilient_queued_spin_lock_slowpath(lock, val); +} + +#else + +#define res_spin_lock(lock) resilient_tas_spin_lock(lock) + +#endif /* CONFIG_QUEUED_SPINLOCKS */ + +static __always_inline void res_spin_unlock(rqspinlock_t *lock) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + + if (unlikely(rqh->cnt > RES_NR_HELD)) + goto unlock; + WRITE_ONCE(rqh->locks[rqh->cnt - 1], NULL); +unlock: + /* + * Release barrier, ensures correct ordering. See release_held_lock_entry + * for details. Perform release store instead of queued_spin_unlock, + * since we use this function for test-and-set fallback as well. When we + * have CONFIG_QUEUED_SPINLOCKS=n, we clear the full 4-byte lockword. + * + * Like release_held_lock_entry, we can do the release before the dec. + * We simply care about not seeing the 'lock' in our table from a remote + * CPU once the lock has been released, which doesn't rely on the dec. + * + * Unlike smp_wmb(), release is not a two way fence, hence it is + * possible for a inc to move up and reorder with our clearing of the + * entry. This isn't a problem however, as for a misdiagnosis of ABBA, + * the remote CPU needs to hold this lock, which won't be released until + * the store below is done, which would ensure the entry is overwritten + * to NULL, etc. + */ + smp_store_release(&lock->locked, 0); + this_cpu_dec(rqspinlock_held_locks.cnt); +} + +#ifdef CONFIG_QUEUED_SPINLOCKS +#define raw_res_spin_lock_init(lock) ({ *(lock) = (rqspinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; }) +#else +#define raw_res_spin_lock_init(lock) ({ *(lock) = (rqspinlock_t){0}; }) +#endif + +#define raw_res_spin_lock(lock) \ + ({ \ + int __ret; \ + preempt_disable(); \ + __ret = res_spin_lock(lock); \ + if (__ret) \ + preempt_enable(); \ + __ret; \ + }) + +#define raw_res_spin_unlock(lock) ({ res_spin_unlock(lock); preempt_enable(); }) + +#define raw_res_spin_lock_irqsave(lock, flags) \ + ({ \ + int __ret; \ + local_irq_save(flags); \ + __ret = raw_res_spin_lock(lock); \ + if (__ret) \ + local_irq_restore(flags); \ + __ret; \ + }) + +#define raw_res_spin_unlock_irqrestore(lock, flags) ({ raw_res_spin_unlock(lock); local_irq_restore(flags); }) + +#endif /* __ASM_GENERIC_RQSPINLOCK_H */ diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 7d55553de3fce..7fb2b80eef073 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -30,6 +30,7 @@ #include #include #include +#include struct bpf_verifier_env; struct bpf_verifier_log; @@ -204,6 +205,7 @@ enum btf_field_type { BPF_REFCOUNT = (1 << 9), BPF_WORKQUEUE = (1 << 10), BPF_UPTR = (1 << 11), + BPF_RES_SPIN_LOCK = (1 << 12), }; typedef void (*btf_dtor_kfunc_t)(void *); @@ -239,6 +241,7 @@ struct btf_record { u32 cnt; u32 field_mask; int spin_lock_off; + int res_spin_lock_off; int timer_off; int wq_off; int refcount_off; @@ -314,6 +317,8 @@ static inline const char *btf_field_type_name(enum btf_field_type type) switch (type) { case BPF_SPIN_LOCK: return "bpf_spin_lock"; + case BPF_RES_SPIN_LOCK: + return "bpf_res_spin_lock"; case BPF_TIMER: return "bpf_timer"; case BPF_WORKQUEUE: @@ -346,6 +351,8 @@ static inline u32 btf_field_type_size(enum btf_field_type type) switch (type) { case BPF_SPIN_LOCK: return sizeof(struct bpf_spin_lock); + case BPF_RES_SPIN_LOCK: + return sizeof(struct bpf_res_spin_lock); case BPF_TIMER: return sizeof(struct bpf_timer); case BPF_WORKQUEUE: @@ -376,6 +383,8 @@ static inline u32 btf_field_type_align(enum btf_field_type type) switch (type) { case BPF_SPIN_LOCK: return __alignof__(struct bpf_spin_lock); + case BPF_RES_SPIN_LOCK: + return __alignof__(struct bpf_res_spin_lock); case BPF_TIMER: return __alignof__(struct bpf_timer); case BPF_WORKQUEUE: @@ -419,6 +428,7 @@ static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) case BPF_RB_ROOT: /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: case BPF_TIMER: case BPF_WORKQUEUE: case BPF_KPTR_UNREF: diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index d6cfc4ee6820c..9734544b6957c 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -115,6 +115,14 @@ struct bpf_reg_state { int depth:30; } iter; + /* For irq stack slots */ + struct { + enum { + IRQ_NATIVE_KFUNC, + IRQ_LOCK_KFUNC, + } kfunc_class; + } irq; + /* Max size from any of the above. */ struct { unsigned long raw1; @@ -255,9 +263,12 @@ struct bpf_reference_state { * default to pointer reference on zero initialization of a state. */ enum ref_state_type { - REF_TYPE_PTR = 1, - REF_TYPE_IRQ = 2, - REF_TYPE_LOCK = 3, + REF_TYPE_PTR = (1 << 1), + REF_TYPE_IRQ = (1 << 2), + REF_TYPE_LOCK = (1 << 3), + REF_TYPE_RES_LOCK = (1 << 4), + REF_TYPE_RES_LOCK_IRQ = (1 << 5), + REF_TYPE_LOCK_MASK = REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, } type; /* Track each reference created with a unique id, even if the same * instruction creates the reference multiple times (eg, via CALL). @@ -424,6 +435,8 @@ struct bpf_verifier_state { u32 active_locks; u32 active_preempt_locks; u32 active_irq_id; + u32 active_lock_id; + void *active_lock_ptr; bool active_rcu_lock; bool speculative; diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c index 519e3f5e9c10f..f7a2bfb0c11a6 100644 --- a/kernel/bpf/btf.c +++ b/kernel/bpf/btf.c @@ -3481,6 +3481,15 @@ static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_ goto end; } } + if (field_mask & BPF_RES_SPIN_LOCK) { + if (!strcmp(name, "bpf_res_spin_lock")) { + if (*seen_mask & BPF_RES_SPIN_LOCK) + return -E2BIG; + *seen_mask |= BPF_RES_SPIN_LOCK; + type = BPF_RES_SPIN_LOCK; + goto end; + } + } if (field_mask & BPF_TIMER) { if (!strcmp(name, "bpf_timer")) { if (*seen_mask & BPF_TIMER) @@ -3659,6 +3668,7 @@ static int btf_find_field_one(const struct btf *btf, switch (field_type) { case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: case BPF_TIMER: case BPF_WORKQUEUE: case BPF_LIST_NODE: @@ -3952,6 +3962,7 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type return ERR_PTR(-ENOMEM); rec->spin_lock_off = -EINVAL; + rec->res_spin_lock_off = -EINVAL; rec->timer_off = -EINVAL; rec->wq_off = -EINVAL; rec->refcount_off = -EINVAL; @@ -3979,6 +3990,11 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type /* Cache offset for faster lookup at runtime */ rec->spin_lock_off = rec->fields[i].offset; break; + case BPF_RES_SPIN_LOCK: + WARN_ON_ONCE(rec->spin_lock_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->res_spin_lock_off = rec->fields[i].offset; + break; case BPF_TIMER: WARN_ON_ONCE(rec->timer_off >= 0); /* Cache offset for faster lookup at runtime */ @@ -4022,9 +4038,15 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type rec->cnt++; } + if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { + ret = -EINVAL; + goto end; + } + /* bpf_{list_head, rb_node} require bpf_spin_lock */ if ((btf_record_has_field(rec, BPF_LIST_HEAD) || - btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { + btf_record_has_field(rec, BPF_RB_ROOT)) && + (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { ret = -EINVAL; goto end; } @@ -5637,7 +5659,7 @@ btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) type = &tab->types[tab->cnt]; type->btf_id = i; - record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | + record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | BPF_KPTR, t->size); /* The record cannot be unset, treat it as an error if so */ diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c index c308300fc72f6..93d45812bb6aa 100644 --- a/kernel/bpf/hashtab.c +++ b/kernel/bpf/hashtab.c @@ -16,6 +16,7 @@ #include "bpf_lru_list.h" #include "map_in_map.h" #include +#include #define HTAB_CREATE_FLAG_MASK \ (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ @@ -78,7 +79,7 @@ */ struct bucket { struct hlist_nulls_head head; - raw_spinlock_t raw_lock; + rqspinlock_t raw_lock; }; #define HASHTAB_MAP_LOCK_COUNT 8 @@ -104,8 +105,6 @@ struct bpf_htab { u32 n_buckets; /* number of hash buckets */ u32 elem_size; /* size of each element in bytes */ u32 hashrnd; - struct lock_class_key lockdep_key; - int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; }; /* each htab element is struct htab_elem + key + value */ @@ -140,45 +139,26 @@ static void htab_init_buckets(struct bpf_htab *htab) for (i = 0; i < htab->n_buckets; i++) { INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); - raw_spin_lock_init(&htab->buckets[i].raw_lock); - lockdep_set_class(&htab->buckets[i].raw_lock, - &htab->lockdep_key); + raw_res_spin_lock_init(&htab->buckets[i].raw_lock); cond_resched(); } } -static inline int htab_lock_bucket(const struct bpf_htab *htab, - struct bucket *b, u32 hash, - unsigned long *pflags) +static inline int htab_lock_bucket(struct bucket *b, unsigned long *pflags) { unsigned long flags; + int ret; - hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); - - preempt_disable(); - local_irq_save(flags); - if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { - __this_cpu_dec(*(htab->map_locked[hash])); - local_irq_restore(flags); - preempt_enable(); - return -EBUSY; - } - - raw_spin_lock(&b->raw_lock); + ret = raw_res_spin_lock_irqsave(&b->raw_lock, flags); + if (ret) + return ret; *pflags = flags; - return 0; } -static inline void htab_unlock_bucket(const struct bpf_htab *htab, - struct bucket *b, u32 hash, - unsigned long flags) +static inline void htab_unlock_bucket(struct bucket *b, unsigned long flags) { - hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); - raw_spin_unlock(&b->raw_lock); - __this_cpu_dec(*(htab->map_locked[hash])); - local_irq_restore(flags); - preempt_enable(); + raw_res_spin_unlock_irqrestore(&b->raw_lock, flags); } static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); @@ -483,14 +463,12 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr) bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); struct bpf_htab *htab; - int err, i; + int err; htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); if (!htab) return ERR_PTR(-ENOMEM); - lockdep_register_key(&htab->lockdep_key); - bpf_map_init_from_attr(&htab->map, attr); if (percpu_lru) { @@ -536,15 +514,6 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr) if (!htab->buckets) goto free_elem_count; - for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { - htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, - sizeof(int), - sizeof(int), - GFP_USER); - if (!htab->map_locked[i]) - goto free_map_locked; - } - if (htab->map.map_flags & BPF_F_ZERO_SEED) htab->hashrnd = 0; else @@ -607,15 +576,12 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr) free_map_locked: if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); - for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) - free_percpu(htab->map_locked[i]); bpf_map_area_free(htab->buckets); bpf_mem_alloc_destroy(&htab->pcpu_ma); bpf_mem_alloc_destroy(&htab->ma); free_elem_count: bpf_map_free_elem_count(&htab->map); free_htab: - lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); return ERR_PTR(err); } @@ -817,7 +783,7 @@ static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) b = __select_bucket(htab, tgt_l->hash); head = &b->head; - ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) return false; @@ -828,7 +794,7 @@ static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) break; } - htab_unlock_bucket(htab, b, tgt_l->hash, flags); + htab_unlock_bucket(b, flags); if (l == tgt_l) check_and_free_fields(htab, l); @@ -1147,7 +1113,7 @@ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, */ } - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) return ret; @@ -1198,7 +1164,7 @@ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, check_and_free_fields(htab, l_old); } } - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); if (l_old) { if (old_map_ptr) map->ops->map_fd_put_ptr(map, old_map_ptr, true); @@ -1207,7 +1173,7 @@ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, } return 0; err: - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); return ret; } @@ -1254,7 +1220,7 @@ static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value copy_map_value(&htab->map, l_new->key + round_up(map->key_size, 8), value); - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) goto err_lock_bucket; @@ -1275,7 +1241,7 @@ static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value ret = 0; err: - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); err_lock_bucket: if (ret) @@ -1312,7 +1278,7 @@ static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, b = __select_bucket(htab, hash); head = &b->head; - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) return ret; @@ -1337,7 +1303,7 @@ static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, } ret = 0; err: - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); return ret; } @@ -1378,7 +1344,7 @@ static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, return -ENOMEM; } - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) goto err_lock_bucket; @@ -1402,7 +1368,7 @@ static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, } ret = 0; err: - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); err_lock_bucket: if (l_new) { bpf_map_dec_elem_count(&htab->map); @@ -1444,7 +1410,7 @@ static long htab_map_delete_elem(struct bpf_map *map, void *key) b = __select_bucket(htab, hash); head = &b->head; - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) return ret; @@ -1454,7 +1420,7 @@ static long htab_map_delete_elem(struct bpf_map *map, void *key) else ret = -ENOENT; - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); if (l) free_htab_elem(htab, l); @@ -1480,7 +1446,7 @@ static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) b = __select_bucket(htab, hash); head = &b->head; - ret = htab_lock_bucket(htab, b, hash, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) return ret; @@ -1491,7 +1457,7 @@ static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) else ret = -ENOENT; - htab_unlock_bucket(htab, b, hash, flags); + htab_unlock_bucket(b, flags); if (l) htab_lru_push_free(htab, l); return ret; @@ -1558,7 +1524,6 @@ static void htab_map_free_timers_and_wq(struct bpf_map *map) static void htab_map_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); - int i; /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. * bpf_free_used_maps() is called after bpf prog is no longer executing. @@ -1583,9 +1548,6 @@ static void htab_map_free(struct bpf_map *map) bpf_mem_alloc_destroy(&htab->ma); if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); - for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) - free_percpu(htab->map_locked[i]); - lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); } @@ -1628,7 +1590,7 @@ static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, b = __select_bucket(htab, hash); head = &b->head; - ret = htab_lock_bucket(htab, b, hash, &bflags); + ret = htab_lock_bucket(b, &bflags); if (ret) return ret; @@ -1665,7 +1627,7 @@ static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, hlist_nulls_del_rcu(&l->hash_node); out_unlock: - htab_unlock_bucket(htab, b, hash, bflags); + htab_unlock_bucket(b, bflags); if (l) { if (is_lru_map) @@ -1787,7 +1749,7 @@ __htab_map_lookup_and_delete_batch(struct bpf_map *map, head = &b->head; /* do not grab the lock unless need it (bucket_cnt > 0). */ if (locked) { - ret = htab_lock_bucket(htab, b, batch, &flags); + ret = htab_lock_bucket(b, &flags); if (ret) { rcu_read_unlock(); bpf_enable_instrumentation(); @@ -1810,7 +1772,7 @@ __htab_map_lookup_and_delete_batch(struct bpf_map *map, /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ - htab_unlock_bucket(htab, b, batch, flags); + htab_unlock_bucket(b, flags); rcu_read_unlock(); bpf_enable_instrumentation(); goto after_loop; @@ -1821,7 +1783,7 @@ __htab_map_lookup_and_delete_batch(struct bpf_map *map, /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ - htab_unlock_bucket(htab, b, batch, flags); + htab_unlock_bucket(b, flags); rcu_read_unlock(); bpf_enable_instrumentation(); kvfree(keys); @@ -1884,7 +1846,7 @@ __htab_map_lookup_and_delete_batch(struct bpf_map *map, dst_val += value_size; } - htab_unlock_bucket(htab, b, batch, flags); + htab_unlock_bucket(b, flags); locked = false; while (node_to_free) { diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c index e8a772e643242..be66d7e520e0d 100644 --- a/kernel/bpf/lpm_trie.c +++ b/kernel/bpf/lpm_trie.c @@ -15,6 +15,7 @@ #include #include #include +#include #include /* Intermediate node */ @@ -36,7 +37,7 @@ struct lpm_trie { size_t n_entries; size_t max_prefixlen; size_t data_size; - raw_spinlock_t lock; + rqspinlock_t lock; }; /* This trie implements a longest prefix match algorithm that can be used to @@ -342,7 +343,9 @@ static long trie_update_elem(struct bpf_map *map, if (!new_node) return -ENOMEM; - raw_spin_lock_irqsave(&trie->lock, irq_flags); + ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags); + if (ret) + goto out_free; new_node->prefixlen = key->prefixlen; RCU_INIT_POINTER(new_node->child[0], NULL); @@ -356,8 +359,7 @@ static long trie_update_elem(struct bpf_map *map, */ slot = &trie->root; - while ((node = rcu_dereference_protected(*slot, - lockdep_is_held(&trie->lock)))) { + while ((node = rcu_dereference(*slot))) { matchlen = longest_prefix_match(trie, node, key); if (node->prefixlen != matchlen || @@ -442,8 +444,8 @@ static long trie_update_elem(struct bpf_map *map, rcu_assign_pointer(*slot, im_node); out: - raw_spin_unlock_irqrestore(&trie->lock, irq_flags); - + raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags); +out_free: if (ret) bpf_mem_cache_free(&trie->ma, new_node); bpf_mem_cache_free_rcu(&trie->ma, free_node); @@ -467,7 +469,9 @@ static long trie_delete_elem(struct bpf_map *map, void *_key) if (key->prefixlen > trie->max_prefixlen) return -EINVAL; - raw_spin_lock_irqsave(&trie->lock, irq_flags); + ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags); + if (ret) + return ret; /* Walk the tree looking for an exact key/length match and keeping * track of the path we traverse. We will need to know the node @@ -478,8 +482,7 @@ static long trie_delete_elem(struct bpf_map *map, void *_key) trim = &trie->root; trim2 = trim; parent = NULL; - while ((node = rcu_dereference_protected( - *trim, lockdep_is_held(&trie->lock)))) { + while ((node = rcu_dereference(*trim))) { matchlen = longest_prefix_match(trie, node, key); if (node->prefixlen != matchlen || @@ -543,7 +546,7 @@ static long trie_delete_elem(struct bpf_map *map, void *_key) free_node = node; out: - raw_spin_unlock_irqrestore(&trie->lock, irq_flags); + raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags); bpf_mem_cache_free_rcu(&trie->ma, free_parent); bpf_mem_cache_free_rcu(&trie->ma, free_node); @@ -592,7 +595,7 @@ static struct bpf_map *trie_alloc(union bpf_attr *attr) offsetof(struct bpf_lpm_trie_key_u8, data); trie->max_prefixlen = trie->data_size * 8; - raw_spin_lock_init(&trie->lock); + raw_res_spin_lock_init(&trie->lock); /* Allocate intermediate and leaf nodes from the same allocator */ leaf_size = sizeof(struct lpm_trie_node) + trie->data_size + diff --git a/kernel/bpf/percpu_freelist.c b/kernel/bpf/percpu_freelist.c index 034cf87b54e9f..632762b572998 100644 --- a/kernel/bpf/percpu_freelist.c +++ b/kernel/bpf/percpu_freelist.c @@ -14,11 +14,9 @@ int pcpu_freelist_init(struct pcpu_freelist *s) for_each_possible_cpu(cpu) { struct pcpu_freelist_head *head = per_cpu_ptr(s->freelist, cpu); - raw_spin_lock_init(&head->lock); + raw_res_spin_lock_init(&head->lock); head->first = NULL; } - raw_spin_lock_init(&s->extralist.lock); - s->extralist.first = NULL; return 0; } @@ -34,58 +32,39 @@ static inline void pcpu_freelist_push_node(struct pcpu_freelist_head *head, WRITE_ONCE(head->first, node); } -static inline void ___pcpu_freelist_push(struct pcpu_freelist_head *head, +static inline bool ___pcpu_freelist_push(struct pcpu_freelist_head *head, struct pcpu_freelist_node *node) { - raw_spin_lock(&head->lock); - pcpu_freelist_push_node(head, node); - raw_spin_unlock(&head->lock); -} - -static inline bool pcpu_freelist_try_push_extra(struct pcpu_freelist *s, - struct pcpu_freelist_node *node) -{ - if (!raw_spin_trylock(&s->extralist.lock)) + if (raw_res_spin_lock(&head->lock)) return false; - - pcpu_freelist_push_node(&s->extralist, node); - raw_spin_unlock(&s->extralist.lock); + pcpu_freelist_push_node(head, node); + raw_res_spin_unlock(&head->lock); return true; } -static inline void ___pcpu_freelist_push_nmi(struct pcpu_freelist *s, - struct pcpu_freelist_node *node) +void __pcpu_freelist_push(struct pcpu_freelist *s, + struct pcpu_freelist_node *node) { - int cpu, orig_cpu; + struct pcpu_freelist_head *head; + int cpu; - orig_cpu = raw_smp_processor_id(); - while (1) { - for_each_cpu_wrap(cpu, cpu_possible_mask, orig_cpu) { - struct pcpu_freelist_head *head; + if (___pcpu_freelist_push(this_cpu_ptr(s->freelist), node)) + return; + while (true) { + for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { + if (cpu == raw_smp_processor_id()) + continue; head = per_cpu_ptr(s->freelist, cpu); - if (raw_spin_trylock(&head->lock)) { - pcpu_freelist_push_node(head, node); - raw_spin_unlock(&head->lock); - return; - } - } - - /* cannot lock any per cpu lock, try extralist */ - if (pcpu_freelist_try_push_extra(s, node)) + if (raw_res_spin_lock(&head->lock)) + continue; + pcpu_freelist_push_node(head, node); + raw_res_spin_unlock(&head->lock); return; + } } } -void __pcpu_freelist_push(struct pcpu_freelist *s, - struct pcpu_freelist_node *node) -{ - if (in_nmi()) - ___pcpu_freelist_push_nmi(s, node); - else - ___pcpu_freelist_push(this_cpu_ptr(s->freelist), node); -} - void pcpu_freelist_push(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { @@ -120,71 +99,29 @@ void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size, static struct pcpu_freelist_node *___pcpu_freelist_pop(struct pcpu_freelist *s) { + struct pcpu_freelist_node *node = NULL; struct pcpu_freelist_head *head; - struct pcpu_freelist_node *node; int cpu; for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { head = per_cpu_ptr(s->freelist, cpu); if (!READ_ONCE(head->first)) continue; - raw_spin_lock(&head->lock); + if (raw_res_spin_lock(&head->lock)) + continue; node = head->first; if (node) { WRITE_ONCE(head->first, node->next); - raw_spin_unlock(&head->lock); + raw_res_spin_unlock(&head->lock); return node; } - raw_spin_unlock(&head->lock); + raw_res_spin_unlock(&head->lock); } - - /* per cpu lists are all empty, try extralist */ - if (!READ_ONCE(s->extralist.first)) - return NULL; - raw_spin_lock(&s->extralist.lock); - node = s->extralist.first; - if (node) - WRITE_ONCE(s->extralist.first, node->next); - raw_spin_unlock(&s->extralist.lock); - return node; -} - -static struct pcpu_freelist_node * -___pcpu_freelist_pop_nmi(struct pcpu_freelist *s) -{ - struct pcpu_freelist_head *head; - struct pcpu_freelist_node *node; - int cpu; - - for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { - head = per_cpu_ptr(s->freelist, cpu); - if (!READ_ONCE(head->first)) - continue; - if (raw_spin_trylock(&head->lock)) { - node = head->first; - if (node) { - WRITE_ONCE(head->first, node->next); - raw_spin_unlock(&head->lock); - return node; - } - raw_spin_unlock(&head->lock); - } - } - - /* cannot pop from per cpu lists, try extralist */ - if (!READ_ONCE(s->extralist.first) || !raw_spin_trylock(&s->extralist.lock)) - return NULL; - node = s->extralist.first; - if (node) - WRITE_ONCE(s->extralist.first, node->next); - raw_spin_unlock(&s->extralist.lock); return node; } struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *s) { - if (in_nmi()) - return ___pcpu_freelist_pop_nmi(s); return ___pcpu_freelist_pop(s); } diff --git a/kernel/bpf/percpu_freelist.h b/kernel/bpf/percpu_freelist.h index 3c76553cfe571..914798b749672 100644 --- a/kernel/bpf/percpu_freelist.h +++ b/kernel/bpf/percpu_freelist.h @@ -5,15 +5,15 @@ #define __PERCPU_FREELIST_H__ #include #include +#include struct pcpu_freelist_head { struct pcpu_freelist_node *first; - raw_spinlock_t lock; + rqspinlock_t lock; }; struct pcpu_freelist { struct pcpu_freelist_head __percpu *freelist; - struct pcpu_freelist_head extralist; }; struct pcpu_freelist_node { diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index 45dc98d526cc3..4851a14b8a379 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -665,6 +665,7 @@ void btf_record_free(struct btf_record *rec) case BPF_RB_ROOT: case BPF_RB_NODE: case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: case BPF_TIMER: case BPF_REFCOUNT: case BPF_WORKQUEUE: @@ -717,6 +718,7 @@ struct btf_record *btf_record_dup(const struct btf_record *rec) case BPF_RB_ROOT: case BPF_RB_NODE: case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: case BPF_TIMER: case BPF_REFCOUNT: case BPF_WORKQUEUE: @@ -794,6 +796,7 @@ void bpf_obj_free_fields(const struct btf_record *rec, void *obj) switch (fields[i].type) { case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: break; case BPF_TIMER: bpf_timer_cancel_and_free(field_ptr); @@ -1229,7 +1232,7 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token, return -EINVAL; map->record = btf_parse_fields(btf, value_type, - BPF_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD | + BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD | BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE | BPF_UPTR, map->value_size); if (!IS_ERR_OR_NULL(map->record)) { @@ -1248,6 +1251,7 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token, case 0: continue; case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: if (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_ARRAY && map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 3303a3605ee80..4057081e996f1 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -456,7 +456,7 @@ static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) { - return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); + return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); } static bool type_is_rdonly_mem(u32 type) @@ -1155,7 +1155,8 @@ static int release_irq_state(struct bpf_verifier_state *state, int id); static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, - struct bpf_reg_state *reg, int insn_idx) + struct bpf_reg_state *reg, int insn_idx, + int kfunc_class) { struct bpf_func_state *state = func(env, reg); struct bpf_stack_state *slot; @@ -1177,6 +1178,7 @@ static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ st->live |= REG_LIVE_WRITTEN; st->ref_obj_id = id; + st->irq.kfunc_class = kfunc_class; for (i = 0; i < BPF_REG_SIZE; i++) slot->slot_type[i] = STACK_IRQ_FLAG; @@ -1185,7 +1187,8 @@ static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, return 0; } -static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int kfunc_class) { struct bpf_func_state *state = func(env, reg); struct bpf_stack_state *slot; @@ -1199,6 +1202,15 @@ static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_r slot = &state->stack[spi]; st = &slot->spilled_ptr; + if (st->irq.kfunc_class != kfunc_class) { + const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; + const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; + + verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", + flag_kfunc, used_kfunc); + return -EINVAL; + } + err = release_irq_state(env->cur_state, st->ref_obj_id); WARN_ON_ONCE(err && err != -EACCES); if (err) { @@ -1416,6 +1428,8 @@ static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf dst->active_preempt_locks = src->active_preempt_locks; dst->active_rcu_lock = src->active_rcu_lock; dst->active_irq_id = src->active_irq_id; + dst->active_lock_id = src->active_lock_id; + dst->active_lock_ptr = src->active_lock_ptr; return 0; } @@ -1515,6 +1529,8 @@ static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum r s->ptr = ptr; state->active_locks++; + state->active_lock_id = id; + state->active_lock_ptr = ptr; return 0; } @@ -1565,16 +1581,24 @@ static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) { + void *prev_ptr = NULL; + u32 prev_id = 0; int i; for (i = 0; i < state->acquired_refs; i++) { - if (state->refs[i].type != type) - continue; - if (state->refs[i].id == id && state->refs[i].ptr == ptr) { + if (state->refs[i].type == type && state->refs[i].id == id && + state->refs[i].ptr == ptr) { release_reference_state(state, i); state->active_locks--; + /* Reassign active lock (id, ptr). */ + state->active_lock_id = prev_id; + state->active_lock_ptr = prev_ptr; return 0; } + if (state->refs[i].type & REF_TYPE_LOCK_MASK) { + prev_id = state->refs[i].id; + prev_ptr = state->refs[i].ptr; + } } return -EINVAL; } @@ -1609,7 +1633,7 @@ static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *st for (i = 0; i < state->acquired_refs; i++) { struct bpf_reference_state *s = &state->refs[i]; - if (s->type != type) + if (!(s->type & type)) continue; if (s->id == id && s->ptr == ptr) @@ -8204,6 +8228,12 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg return err; } +enum { + PROCESS_SPIN_LOCK = (1 << 0), + PROCESS_RES_LOCK = (1 << 1), + PROCESS_LOCK_IRQ = (1 << 2), +}; + /* Implementation details: * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. @@ -8226,30 +8256,33 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg * env->cur_state->active_locks remembers which map value element or allocated * object got locked and clears it after bpf_spin_unlock. */ -static int process_spin_lock(struct bpf_verifier_env *env, int regno, - bool is_lock) +static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) { + bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; + const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; struct bpf_verifier_state *cur = env->cur_state; bool is_const = tnum_is_const(reg->var_off); + bool is_irq = flags & PROCESS_LOCK_IRQ; u64 val = reg->var_off.value; struct bpf_map *map = NULL; struct btf *btf = NULL; struct btf_record *rec; + u32 spin_lock_off; int err; if (!is_const) { verbose(env, - "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", - regno); + "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", + regno, lock_str); return -EINVAL; } if (reg->type == PTR_TO_MAP_VALUE) { map = reg->map_ptr; if (!map->btf) { verbose(env, - "map '%s' has to have BTF in order to use bpf_spin_lock\n", - map->name); + "map '%s' has to have BTF in order to use %s_lock\n", + map->name, lock_str); return -EINVAL; } } else { @@ -8257,36 +8290,53 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno, } rec = reg_btf_record(reg); - if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { - verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", - map ? map->name : "kptr"); + if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { + verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", + map ? map->name : "kptr", lock_str); return -EINVAL; } - if (rec->spin_lock_off != val + reg->off) { - verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", - val + reg->off, rec->spin_lock_off); + spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; + if (spin_lock_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", + val + reg->off, lock_str, spin_lock_off); return -EINVAL; } if (is_lock) { void *ptr; + int type; if (map) ptr = map; else ptr = btf; - if (cur->active_locks) { - verbose(env, - "Locking two bpf_spin_locks are not allowed\n"); - return -EINVAL; + if (!is_res_lock && cur->active_locks) { + if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { + verbose(env, + "Locking two bpf_spin_locks are not allowed\n"); + return -EINVAL; + } + } else if (is_res_lock && cur->active_locks) { + if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { + verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); + return -EINVAL; + } } - err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr); + + if (is_res_lock && is_irq) + type = REF_TYPE_RES_LOCK_IRQ; + else if (is_res_lock) + type = REF_TYPE_RES_LOCK; + else + type = REF_TYPE_LOCK; + err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); if (err < 0) { verbose(env, "Failed to acquire lock state\n"); return err; } } else { void *ptr; + int type; if (map) ptr = map; @@ -8294,12 +8344,26 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno, ptr = btf; if (!cur->active_locks) { - verbose(env, "bpf_spin_unlock without taking a lock\n"); + verbose(env, "%s_unlock without taking a lock\n", lock_str); return -EINVAL; } - if (release_lock_state(env->cur_state, REF_TYPE_LOCK, reg->id, ptr)) { - verbose(env, "bpf_spin_unlock of different lock\n"); + if (is_res_lock && is_irq) + type = REF_TYPE_RES_LOCK_IRQ; + else if (is_res_lock) + type = REF_TYPE_RES_LOCK; + else + type = REF_TYPE_LOCK; + if (!find_lock_state(cur, type, reg->id, ptr)) { + verbose(env, "%s_unlock of different lock\n", lock_str); + return -EINVAL; + } + if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { + verbose(env, "%s_unlock cannot be out of order\n", lock_str); + return -EINVAL; + } + if (release_lock_state(cur, type, reg->id, ptr)) { + verbose(env, "%s_unlock of different lock\n", lock_str); return -EINVAL; } @@ -9625,11 +9689,11 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg, return -EACCES; } if (meta->func_id == BPF_FUNC_spin_lock) { - err = process_spin_lock(env, regno, true); + err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); if (err) return err; } else if (meta->func_id == BPF_FUNC_spin_unlock) { - err = process_spin_lock(env, regno, false); + err = process_spin_lock(env, regno, 0); if (err) return err; } else { @@ -11511,7 +11575,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn regs[BPF_REG_0].map_uid = meta.map_uid; regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; if (!type_may_be_null(ret_flag) && - btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { + btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { regs[BPF_REG_0].id = ++env->id_gen; } break; @@ -11683,10 +11747,10 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn /* mark_btf_func_reg_size() is used when the reg size is determined by * the BTF func_proto's return value size and argument. */ -static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, - size_t reg_size) +static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, + u32 regno, size_t reg_size) { - struct bpf_reg_state *reg = &cur_regs(env)[regno]; + struct bpf_reg_state *reg = ®s[regno]; if (regno == BPF_REG_0) { /* Function return value */ @@ -11704,6 +11768,12 @@ static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, } } +static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, + size_t reg_size) +{ + return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); +} + static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) { return meta->kfunc_flags & KF_ACQUIRE; @@ -11841,6 +11911,7 @@ enum { KF_ARG_RB_ROOT_ID, KF_ARG_RB_NODE_ID, KF_ARG_WORKQUEUE_ID, + KF_ARG_RES_SPIN_LOCK_ID, }; BTF_ID_LIST(kf_arg_btf_ids) @@ -11850,6 +11921,7 @@ BTF_ID(struct, bpf_list_node) BTF_ID(struct, bpf_rb_root) BTF_ID(struct, bpf_rb_node) BTF_ID(struct, bpf_wq) +BTF_ID(struct, bpf_res_spin_lock) static bool __is_kfunc_ptr_arg_type(const struct btf *btf, const struct btf_param *arg, int type) @@ -11898,6 +11970,11 @@ static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); } +static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); +} + static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, const struct btf_param *arg) { @@ -11969,6 +12046,7 @@ enum kfunc_ptr_arg_type { KF_ARG_PTR_TO_MAP, KF_ARG_PTR_TO_WORKQUEUE, KF_ARG_PTR_TO_IRQ_FLAG, + KF_ARG_PTR_TO_RES_SPIN_LOCK, }; enum special_kfunc_type { @@ -12007,6 +12085,10 @@ enum special_kfunc_type { KF_bpf_iter_num_destroy, KF_bpf_set_dentry_xattr, KF_bpf_remove_dentry_xattr, + KF_bpf_res_spin_lock, + KF_bpf_res_spin_unlock, + KF_bpf_res_spin_lock_irqsave, + KF_bpf_res_spin_unlock_irqrestore, }; BTF_SET_START(special_kfunc_set) @@ -12096,6 +12178,10 @@ BTF_ID(func, bpf_remove_dentry_xattr) BTF_ID_UNUSED BTF_ID_UNUSED #endif +BTF_ID(func, bpf_res_spin_lock) +BTF_ID(func, bpf_res_spin_unlock) +BTF_ID(func, bpf_res_spin_lock_irqsave) +BTF_ID(func, bpf_res_spin_unlock_irqrestore) static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) { @@ -12189,6 +12275,9 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) return KF_ARG_PTR_TO_IRQ_FLAG; + if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RES_SPIN_LOCK; + if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { if (!btf_type_is_struct(ref_t)) { verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", @@ -12296,13 +12385,19 @@ static int process_irq_flag(struct bpf_verifier_env *env, int regno, struct bpf_kfunc_call_arg_meta *meta) { struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + int err, kfunc_class = IRQ_NATIVE_KFUNC; bool irq_save; - int err; - if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save]) { + if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { irq_save = true; - } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore]) { + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) + kfunc_class = IRQ_LOCK_KFUNC; + } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { irq_save = false; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) + kfunc_class = IRQ_LOCK_KFUNC; } else { verbose(env, "verifier internal error: unknown irq flags kfunc\n"); return -EFAULT; @@ -12318,7 +12413,7 @@ static int process_irq_flag(struct bpf_verifier_env *env, int regno, if (err) return err; - err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx); + err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); if (err) return err; } else { @@ -12332,7 +12427,7 @@ static int process_irq_flag(struct bpf_verifier_env *env, int regno, if (err) return err; - err = unmark_stack_slot_irq_flag(env, reg); + err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); if (err) return err; } @@ -12459,7 +12554,7 @@ static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_ if (!env->cur_state->active_locks) return -EINVAL; - s = find_lock_state(env->cur_state, REF_TYPE_LOCK, id, ptr); + s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); if (!s) { verbose(env, "held lock and object are not in the same allocation\n"); return -EINVAL; @@ -12495,9 +12590,18 @@ static bool is_bpf_graph_api_kfunc(u32 btf_id) btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; } +static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || + btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || + btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || + btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; +} + static bool kfunc_spin_allowed(u32 btf_id) { - return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id); + return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || + is_bpf_res_spin_lock_kfunc(btf_id); } static bool is_sync_callback_calling_kfunc(u32 btf_id) @@ -12929,6 +13033,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_ case KF_ARG_PTR_TO_CONST_STR: case KF_ARG_PTR_TO_WORKQUEUE: case KF_ARG_PTR_TO_IRQ_FLAG: + case KF_ARG_PTR_TO_RES_SPIN_LOCK: break; default: WARN_ON_ONCE(1); @@ -13227,6 +13332,28 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_ if (ret < 0) return ret; break; + case KF_ARG_PTR_TO_RES_SPIN_LOCK: + { + int flags = PROCESS_RES_LOCK; + + if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); + return -EINVAL; + } + + if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) + return -EFAULT; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) + flags |= PROCESS_SPIN_LOCK; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) + flags |= PROCESS_LOCK_IRQ; + ret = process_spin_lock(env, regno, flags); + if (ret < 0) + return ret; + break; + } } } @@ -13312,6 +13439,33 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, insn_aux->is_iter_next = is_iter_next_kfunc(&meta); + if (!insn->off && + (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || + insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { + struct bpf_verifier_state *branch; + struct bpf_reg_state *regs; + + branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); + if (!branch) { + verbose(env, "failed to push state for failed lock acquisition\n"); + return -ENOMEM; + } + + regs = branch->frame[branch->curframe]->regs; + + /* Clear r0-r5 registers in forked state */ + for (i = 0; i < CALLER_SAVED_REGS; i++) + mark_reg_not_init(env, regs, caller_saved[i]); + + mark_reg_unknown(env, regs, BPF_REG_0); + err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); + if (err) { + verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); + return err; + } + __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); + } + if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); return -EACCES; @@ -13482,6 +13636,9 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, if (btf_type_is_scalar(t)) { mark_reg_unknown(env, regs, BPF_REG_0); + if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || + meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) + __mark_reg_const_zero(env, ®s[BPF_REG_0]); mark_btf_func_reg_size(env, BPF_REG_0, t->size); } else if (btf_type_is_ptr(t)) { ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); @@ -18417,7 +18574,8 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, case STACK_IRQ_FLAG: old_reg = &old->stack[spi].spilled_ptr; cur_reg = &cur->stack[spi].spilled_ptr; - if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || + old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) return false; break; case STACK_MISC: @@ -18452,6 +18610,10 @@ static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *c if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) return false; + if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || + old->active_lock_ptr != cur->active_lock_ptr) + return false; + for (i = 0; i < old->acquired_refs; i++) { if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || old->refs[i].type != cur->refs[i].type) @@ -18461,6 +18623,8 @@ static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *c case REF_TYPE_IRQ: break; case REF_TYPE_LOCK: + case REF_TYPE_RES_LOCK: + case REF_TYPE_RES_LOCK_IRQ: if (old->refs[i].ptr != cur->refs[i].ptr) return false; break; @@ -19746,7 +19910,7 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env, } } - if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { + if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); return -EINVAL; diff --git a/kernel/locking/Makefile b/kernel/locking/Makefile index 0db4093d17b8a..5645e9029bc00 100644 --- a/kernel/locking/Makefile +++ b/kernel/locking/Makefile @@ -24,6 +24,7 @@ obj-$(CONFIG_SMP) += spinlock.o obj-$(CONFIG_LOCK_SPIN_ON_OWNER) += osq_lock.o obj-$(CONFIG_PROVE_LOCKING) += spinlock.o obj-$(CONFIG_QUEUED_SPINLOCKS) += qspinlock.o +obj-$(CONFIG_BPF_SYSCALL) += rqspinlock.o obj-$(CONFIG_RT_MUTEXES) += rtmutex_api.o obj-$(CONFIG_PREEMPT_RT) += spinlock_rt.o ww_rt_mutex.o obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o diff --git a/kernel/locking/lock_events_list.h b/kernel/locking/lock_events_list.h index 97fb6f3f840aa..c5286249994d0 100644 --- a/kernel/locking/lock_events_list.h +++ b/kernel/locking/lock_events_list.h @@ -49,6 +49,11 @@ LOCK_EVENT(lock_use_node4) /* # of locking ops that use 4th percpu node */ LOCK_EVENT(lock_no_node) /* # of locking ops w/o using percpu node */ #endif /* CONFIG_QUEUED_SPINLOCKS */ +/* + * Locking events for Resilient Queued Spin Lock + */ +LOCK_EVENT(rqspinlock_lock_timeout) /* # of locking ops that timeout */ + /* * Locking events for rwsem */ diff --git a/kernel/locking/locktorture.c b/kernel/locking/locktorture.c index cc33470f4de97..ce0362f0a8719 100644 --- a/kernel/locking/locktorture.c +++ b/kernel/locking/locktorture.c @@ -362,6 +362,60 @@ static struct lock_torture_ops raw_spin_lock_irq_ops = { .name = "raw_spin_lock_irq" }; +#ifdef CONFIG_BPF_SYSCALL + +#include +static rqspinlock_t rqspinlock; + +static int torture_raw_res_spin_write_lock(int tid __maybe_unused) +{ + raw_res_spin_lock(&rqspinlock); + return 0; +} + +static void torture_raw_res_spin_write_unlock(int tid __maybe_unused) +{ + raw_res_spin_unlock(&rqspinlock); +} + +static struct lock_torture_ops raw_res_spin_lock_ops = { + .writelock = torture_raw_res_spin_write_lock, + .write_delay = torture_spin_lock_write_delay, + .task_boost = torture_rt_boost, + .writeunlock = torture_raw_res_spin_write_unlock, + .readlock = NULL, + .read_delay = NULL, + .readunlock = NULL, + .name = "raw_res_spin_lock" +}; + +static int torture_raw_res_spin_write_lock_irq(int tid __maybe_unused) +{ + unsigned long flags; + + raw_res_spin_lock_irqsave(&rqspinlock, flags); + cxt.cur_ops->flags = flags; + return 0; +} + +static void torture_raw_res_spin_write_unlock_irq(int tid __maybe_unused) +{ + raw_res_spin_unlock_irqrestore(&rqspinlock, cxt.cur_ops->flags); +} + +static struct lock_torture_ops raw_res_spin_lock_irq_ops = { + .writelock = torture_raw_res_spin_write_lock_irq, + .write_delay = torture_spin_lock_write_delay, + .task_boost = torture_rt_boost, + .writeunlock = torture_raw_res_spin_write_unlock_irq, + .readlock = NULL, + .read_delay = NULL, + .readunlock = NULL, + .name = "raw_res_spin_lock_irq" +}; + +#endif + static DEFINE_RWLOCK(torture_rwlock); static int torture_rwlock_write_lock(int tid __maybe_unused) @@ -1168,6 +1222,9 @@ static int __init lock_torture_init(void) &lock_busted_ops, &spin_lock_ops, &spin_lock_irq_ops, &raw_spin_lock_ops, &raw_spin_lock_irq_ops, +#ifdef CONFIG_BPF_SYSCALL + &raw_res_spin_lock_ops, &raw_res_spin_lock_irq_ops, +#endif &rw_lock_ops, &rw_lock_irq_ops, &mutex_lock_ops, &ww_mutex_lock_ops, diff --git a/kernel/locking/mcs_spinlock.h b/kernel/locking/mcs_spinlock.h index 85251d8771d91..5c92ba199b90b 100644 --- a/kernel/locking/mcs_spinlock.h +++ b/kernel/locking/mcs_spinlock.h @@ -15,12 +15,6 @@ #include -struct mcs_spinlock { - struct mcs_spinlock *next; - int locked; /* 1 if lock acquired */ - int count; /* nesting count, see qspinlock.c */ -}; - #ifndef arch_mcs_spin_lock_contended /* * Using smp_cond_load_acquire() provides the acquire semantics @@ -30,9 +24,7 @@ struct mcs_spinlock { * spinning, and smp_cond_load_acquire() provides that behavior. */ #define arch_mcs_spin_lock_contended(l) \ -do { \ - smp_cond_load_acquire(l, VAL); \ -} while (0) + smp_cond_load_acquire(l, VAL) #endif #ifndef arch_mcs_spin_unlock_contended diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c index 7d96bed718e42..af8d122bb649e 100644 --- a/kernel/locking/qspinlock.c +++ b/kernel/locking/qspinlock.c @@ -25,8 +25,9 @@ #include /* - * Include queued spinlock statistics code + * Include queued spinlock definitions and statistics code */ +#include "qspinlock.h" #include "qspinlock_stat.h" /* @@ -67,36 +68,6 @@ */ #include "mcs_spinlock.h" -#define MAX_NODES 4 - -/* - * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in - * size and four of them will fit nicely in one 64-byte cacheline. For - * pvqspinlock, however, we need more space for extra data. To accommodate - * that, we insert two more long words to pad it up to 32 bytes. IOW, only - * two of them can fit in a cacheline in this case. That is OK as it is rare - * to have more than 2 levels of slowpath nesting in actual use. We don't - * want to penalize pvqspinlocks to optimize for a rare case in native - * qspinlocks. - */ -struct qnode { - struct mcs_spinlock mcs; -#ifdef CONFIG_PARAVIRT_SPINLOCKS - long reserved[2]; -#endif -}; - -/* - * The pending bit spinning loop count. - * This heuristic is used to limit the number of lockword accesses - * made by atomic_cond_read_relaxed when waiting for the lock to - * transition out of the "== _Q_PENDING_VAL" state. We don't spin - * indefinitely because there's no guarantee that we'll make forward - * progress. - */ -#ifndef _Q_PENDING_LOOPS -#define _Q_PENDING_LOOPS 1 -#endif /* * Per-CPU queue node structures; we can never have more than 4 nested @@ -106,161 +77,7 @@ struct qnode { * * PV doubles the storage and uses the second cacheline for PV state. */ -static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]); - -/* - * We must be able to distinguish between no-tail and the tail at 0:0, - * therefore increment the cpu number by one. - */ - -static inline __pure u32 encode_tail(int cpu, int idx) -{ - u32 tail; - - tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; - tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ - - return tail; -} - -static inline __pure struct mcs_spinlock *decode_tail(u32 tail) -{ - int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; - int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; - - return per_cpu_ptr(&qnodes[idx].mcs, cpu); -} - -static inline __pure -struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) -{ - return &((struct qnode *)base + idx)->mcs; -} - -#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) - -#if _Q_PENDING_BITS == 8 -/** - * clear_pending - clear the pending bit. - * @lock: Pointer to queued spinlock structure - * - * *,1,* -> *,0,* - */ -static __always_inline void clear_pending(struct qspinlock *lock) -{ - WRITE_ONCE(lock->pending, 0); -} - -/** - * clear_pending_set_locked - take ownership and clear the pending bit. - * @lock: Pointer to queued spinlock structure - * - * *,1,0 -> *,0,1 - * - * Lock stealing is not allowed if this function is used. - */ -static __always_inline void clear_pending_set_locked(struct qspinlock *lock) -{ - WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); -} - -/* - * xchg_tail - Put in the new queue tail code word & retrieve previous one - * @lock : Pointer to queued spinlock structure - * @tail : The new queue tail code word - * Return: The previous queue tail code word - * - * xchg(lock, tail), which heads an address dependency - * - * p,*,* -> n,*,* ; prev = xchg(lock, node) - */ -static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) -{ - /* - * We can use relaxed semantics since the caller ensures that the - * MCS node is properly initialized before updating the tail. - */ - return (u32)xchg_relaxed(&lock->tail, - tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; -} - -#else /* _Q_PENDING_BITS == 8 */ - -/** - * clear_pending - clear the pending bit. - * @lock: Pointer to queued spinlock structure - * - * *,1,* -> *,0,* - */ -static __always_inline void clear_pending(struct qspinlock *lock) -{ - atomic_andnot(_Q_PENDING_VAL, &lock->val); -} - -/** - * clear_pending_set_locked - take ownership and clear the pending bit. - * @lock: Pointer to queued spinlock structure - * - * *,1,0 -> *,0,1 - */ -static __always_inline void clear_pending_set_locked(struct qspinlock *lock) -{ - atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); -} - -/** - * xchg_tail - Put in the new queue tail code word & retrieve previous one - * @lock : Pointer to queued spinlock structure - * @tail : The new queue tail code word - * Return: The previous queue tail code word - * - * xchg(lock, tail) - * - * p,*,* -> n,*,* ; prev = xchg(lock, node) - */ -static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) -{ - u32 old, new; - - old = atomic_read(&lock->val); - do { - new = (old & _Q_LOCKED_PENDING_MASK) | tail; - /* - * We can use relaxed semantics since the caller ensures that - * the MCS node is properly initialized before updating the - * tail. - */ - } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new)); - - return old; -} -#endif /* _Q_PENDING_BITS == 8 */ - -/** - * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending - * @lock : Pointer to queued spinlock structure - * Return: The previous lock value - * - * *,*,* -> *,1,* - */ -#ifndef queued_fetch_set_pending_acquire -static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) -{ - return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); -} -#endif - -/** - * set_locked - Set the lock bit and own the lock - * @lock: Pointer to queued spinlock structure - * - * *,*,0 -> *,0,1 - */ -static __always_inline void set_locked(struct qspinlock *lock) -{ - WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); -} - +static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[_Q_MAX_NODES]); /* * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for @@ -410,7 +227,7 @@ void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) * any MCS node. This is not the most elegant solution, but is * simple enough. */ - if (unlikely(idx >= MAX_NODES)) { + if (unlikely(idx >= _Q_MAX_NODES)) { lockevent_inc(lock_no_node); while (!queued_spin_trylock(lock)) cpu_relax(); @@ -465,7 +282,7 @@ void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) * head of the waitqueue. */ if (old & _Q_TAIL_MASK) { - prev = decode_tail(old); + prev = decode_tail(old, qnodes); /* Link @node into the waitqueue. */ WRITE_ONCE(prev->next, node); diff --git a/kernel/locking/qspinlock.h b/kernel/locking/qspinlock.h new file mode 100644 index 0000000000000..d4ceb9490365f --- /dev/null +++ b/kernel/locking/qspinlock.h @@ -0,0 +1,200 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Queued spinlock defines + * + * This file contains macro definitions and functions shared between different + * qspinlock slow path implementations. + */ +#ifndef __LINUX_QSPINLOCK_H +#define __LINUX_QSPINLOCK_H + +#include +#include +#include +#include + +#define _Q_MAX_NODES 4 + +/* + * The pending bit spinning loop count. + * This heuristic is used to limit the number of lockword accesses + * made by atomic_cond_read_relaxed when waiting for the lock to + * transition out of the "== _Q_PENDING_VAL" state. We don't spin + * indefinitely because there's no guarantee that we'll make forward + * progress. + */ +#ifndef _Q_PENDING_LOOPS +#define _Q_PENDING_LOOPS 1 +#endif + +/* + * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in + * size and four of them will fit nicely in one 64-byte cacheline. For + * pvqspinlock, however, we need more space for extra data. To accommodate + * that, we insert two more long words to pad it up to 32 bytes. IOW, only + * two of them can fit in a cacheline in this case. That is OK as it is rare + * to have more than 2 levels of slowpath nesting in actual use. We don't + * want to penalize pvqspinlocks to optimize for a rare case in native + * qspinlocks. + */ +struct qnode { + struct mcs_spinlock mcs; +#ifdef CONFIG_PARAVIRT_SPINLOCKS + long reserved[2]; +#endif +}; + +/* + * We must be able to distinguish between no-tail and the tail at 0:0, + * therefore increment the cpu number by one. + */ + +static inline __pure u32 encode_tail(int cpu, int idx) +{ + u32 tail; + + tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; + tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ + + return tail; +} + +static inline __pure struct mcs_spinlock *decode_tail(u32 tail, struct qnode *qnodes) +{ + int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; + int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; + + return per_cpu_ptr(&qnodes[idx].mcs, cpu); +} + +static inline __pure +struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx) +{ + return &((struct qnode *)base + idx)->mcs; +} + +#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) + +#if _Q_PENDING_BITS == 8 +/** + * clear_pending - clear the pending bit. + * @lock: Pointer to queued spinlock structure + * + * *,1,* -> *,0,* + */ +static __always_inline void clear_pending(struct qspinlock *lock) +{ + WRITE_ONCE(lock->pending, 0); +} + +/** + * clear_pending_set_locked - take ownership and clear the pending bit. + * @lock: Pointer to queued spinlock structure + * + * *,1,0 -> *,0,1 + * + * Lock stealing is not allowed if this function is used. + */ +static __always_inline void clear_pending_set_locked(struct qspinlock *lock) +{ + WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); +} + +/* + * xchg_tail - Put in the new queue tail code word & retrieve previous one + * @lock : Pointer to queued spinlock structure + * @tail : The new queue tail code word + * Return: The previous queue tail code word + * + * xchg(lock, tail), which heads an address dependency + * + * p,*,* -> n,*,* ; prev = xchg(lock, node) + */ +static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) +{ + /* + * We can use relaxed semantics since the caller ensures that the + * MCS node is properly initialized before updating the tail. + */ + return (u32)xchg_relaxed(&lock->tail, + tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; +} + +#else /* _Q_PENDING_BITS == 8 */ + +/** + * clear_pending - clear the pending bit. + * @lock: Pointer to queued spinlock structure + * + * *,1,* -> *,0,* + */ +static __always_inline void clear_pending(struct qspinlock *lock) +{ + atomic_andnot(_Q_PENDING_VAL, &lock->val); +} + +/** + * clear_pending_set_locked - take ownership and clear the pending bit. + * @lock: Pointer to queued spinlock structure + * + * *,1,0 -> *,0,1 + */ +static __always_inline void clear_pending_set_locked(struct qspinlock *lock) +{ + atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); +} + +/** + * xchg_tail - Put in the new queue tail code word & retrieve previous one + * @lock : Pointer to queued spinlock structure + * @tail : The new queue tail code word + * Return: The previous queue tail code word + * + * xchg(lock, tail) + * + * p,*,* -> n,*,* ; prev = xchg(lock, node) + */ +static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) +{ + u32 old, new; + + old = atomic_read(&lock->val); + do { + new = (old & _Q_LOCKED_PENDING_MASK) | tail; + /* + * We can use relaxed semantics since the caller ensures that + * the MCS node is properly initialized before updating the + * tail. + */ + } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new)); + + return old; +} +#endif /* _Q_PENDING_BITS == 8 */ + +/** + * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending + * @lock : Pointer to queued spinlock structure + * Return: The previous lock value + * + * *,*,* -> *,1,* + */ +#ifndef queued_fetch_set_pending_acquire +static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) +{ + return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); +} +#endif + +/** + * set_locked - Set the lock bit and own the lock + * @lock: Pointer to queued spinlock structure + * + * *,*,0 -> *,0,1 + */ +static __always_inline void set_locked(struct qspinlock *lock) +{ + WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); +} + +#endif /* __LINUX_QSPINLOCK_H */ diff --git a/kernel/locking/rqspinlock.c b/kernel/locking/rqspinlock.c new file mode 100644 index 0000000000000..0c53d36e2f6c9 --- /dev/null +++ b/kernel/locking/rqspinlock.c @@ -0,0 +1,764 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Resilient Queued Spin Lock + * + * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. + * (C) Copyright 2013-2014,2018 Red Hat, Inc. + * (C) Copyright 2015 Intel Corp. + * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP + * (C) Copyright 2024 Meta Platforms, Inc. and affiliates. + * + * Authors: Waiman Long + * Peter Zijlstra + * Kumar Kartikeya Dwivedi + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#ifdef CONFIG_QUEUED_SPINLOCKS +#include +#endif +#include +#include +#include + +/* + * Include queued spinlock definitions and statistics code + */ +#ifdef CONFIG_QUEUED_SPINLOCKS +#include "qspinlock.h" +#include "lock_events.h" +#include "rqspinlock.h" +#include "mcs_spinlock.h" +#endif + +/* + * The basic principle of a queue-based spinlock can best be understood + * by studying a classic queue-based spinlock implementation called the + * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable + * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and + * Scott") is available at + * + * https://bugzilla.kernel.org/show_bug.cgi?id=206115 + * + * This queued spinlock implementation is based on the MCS lock, however to + * make it fit the 4 bytes we assume spinlock_t to be, and preserve its + * existing API, we must modify it somehow. + * + * In particular; where the traditional MCS lock consists of a tail pointer + * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to + * unlock the next pending (next->locked), we compress both these: {tail, + * next->locked} into a single u32 value. + * + * Since a spinlock disables recursion of its own context and there is a limit + * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there + * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now + * we can encode the tail by combining the 2-bit nesting level with the cpu + * number. With one byte for the lock value and 3 bytes for the tail, only a + * 32-bit word is now needed. Even though we only need 1 bit for the lock, + * we extend it to a full byte to achieve better performance for architectures + * that support atomic byte write. + * + * We also change the first spinner to spin on the lock bit instead of its + * node; whereby avoiding the need to carry a node from lock to unlock, and + * preserving existing lock API. This also makes the unlock code simpler and + * faster. + * + * N.B. The current implementation only supports architectures that allow + * atomic operations on smaller 8-bit and 16-bit data types. + * + */ + +struct rqspinlock_timeout { + u64 timeout_end; + u64 duration; + u64 cur; + u16 spin; +}; + +#define RES_TIMEOUT_VAL 2 + +DEFINE_PER_CPU_ALIGNED(struct rqspinlock_held, rqspinlock_held_locks); +EXPORT_SYMBOL_GPL(rqspinlock_held_locks); + +static bool is_lock_released(rqspinlock_t *lock, u32 mask, struct rqspinlock_timeout *ts) +{ + if (!(atomic_read_acquire(&lock->val) & (mask))) + return true; + return false; +} + +static noinline int check_deadlock_AA(rqspinlock_t *lock, u32 mask, + struct rqspinlock_timeout *ts) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + int cnt = min(RES_NR_HELD, rqh->cnt); + + /* + * Return an error if we hold the lock we are attempting to acquire. + * We'll iterate over max 32 locks; no need to do is_lock_released. + */ + for (int i = 0; i < cnt - 1; i++) { + if (rqh->locks[i] == lock) + return -EDEADLK; + } + return 0; +} + +/* + * This focuses on the most common case of ABBA deadlocks (or ABBA involving + * more locks, which reduce to ABBA). This is not exhaustive, and we rely on + * timeouts as the final line of defense. + */ +static noinline int check_deadlock_ABBA(rqspinlock_t *lock, u32 mask, + struct rqspinlock_timeout *ts) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + int rqh_cnt = min(RES_NR_HELD, rqh->cnt); + void *remote_lock; + int cpu; + + /* + * Find the CPU holding the lock that we want to acquire. If there is a + * deadlock scenario, we will read a stable set on the remote CPU and + * find the target. This would be a constant time operation instead of + * O(NR_CPUS) if we could determine the owning CPU from a lock value, but + * that requires increasing the size of the lock word. + */ + for_each_possible_cpu(cpu) { + struct rqspinlock_held *rqh_cpu = per_cpu_ptr(&rqspinlock_held_locks, cpu); + int real_cnt = READ_ONCE(rqh_cpu->cnt); + int cnt = min(RES_NR_HELD, real_cnt); + + /* + * Let's ensure to break out of this loop if the lock is available for + * us to potentially acquire. + */ + if (is_lock_released(lock, mask, ts)) + return 0; + + /* + * Skip ourselves, and CPUs whose count is less than 2, as they need at + * least one held lock and one acquisition attempt (reflected as top + * most entry) to participate in an ABBA deadlock. + * + * If cnt is more than RES_NR_HELD, it means the current lock being + * acquired won't appear in the table, and other locks in the table are + * already held, so we can't determine ABBA. + */ + if (cpu == smp_processor_id() || real_cnt < 2 || real_cnt > RES_NR_HELD) + continue; + + /* + * Obtain the entry at the top, this corresponds to the lock the + * remote CPU is attempting to acquire in a deadlock situation, + * and would be one of the locks we hold on the current CPU. + */ + remote_lock = READ_ONCE(rqh_cpu->locks[cnt - 1]); + /* + * If it is NULL, we've raced and cannot determine a deadlock + * conclusively, skip this CPU. + */ + if (!remote_lock) + continue; + /* + * Find if the lock we're attempting to acquire is held by this CPU. + * Don't consider the topmost entry, as that must be the latest lock + * being held or acquired. For a deadlock, the target CPU must also + * attempt to acquire a lock we hold, so for this search only 'cnt - 1' + * entries are important. + */ + for (int i = 0; i < cnt - 1; i++) { + if (READ_ONCE(rqh_cpu->locks[i]) != lock) + continue; + /* + * We found our lock as held on the remote CPU. Is the + * acquisition attempt on the remote CPU for a lock held + * by us? If so, we have a deadlock situation, and need + * to recover. + */ + for (int i = 0; i < rqh_cnt - 1; i++) { + if (rqh->locks[i] == remote_lock) + return -EDEADLK; + } + /* + * Inconclusive; retry again later. + */ + return 0; + } + } + return 0; +} + +static DEFINE_PER_CPU(int, report_nest_cnt); +static DEFINE_PER_CPU(bool, report_flag); +static arch_spinlock_t report_lock; + +static void rqspinlock_report_violation(const char *s, void *lock) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + + if (this_cpu_inc_return(report_nest_cnt) != 1) { + this_cpu_dec(report_nest_cnt); + return; + } + if (this_cpu_read(report_flag)) + goto end; + this_cpu_write(report_flag, true); + arch_spin_lock(&report_lock); + + pr_err("CPU %d: %s", smp_processor_id(), s); + pr_info("Held locks: %d\n", rqh->cnt + 1); + pr_info("Held lock[%2d] = 0x%px\n", 0, lock); + for (int i = 0; i < min(RES_NR_HELD, rqh->cnt); i++) + pr_info("Held lock[%2d] = 0x%px\n", i + 1, rqh->locks[i]); + dump_stack(); + + arch_spin_unlock(&report_lock); +end: + this_cpu_dec(report_nest_cnt); +} + +static noinline int check_deadlock(rqspinlock_t *lock, u32 mask, + struct rqspinlock_timeout *ts) +{ + int ret; + + ret = check_deadlock_AA(lock, mask, ts); + if (ret) + return ret; + ret = check_deadlock_ABBA(lock, mask, ts); + if (ret) + return ret; + + return 0; +} + +static noinline int check_timeout(rqspinlock_t *lock, u32 mask, + struct rqspinlock_timeout *ts) +{ + u64 time = ktime_get_mono_fast_ns(); + u64 prev = ts->cur; + + if (!ts->timeout_end) { + ts->cur = time; + ts->timeout_end = time + ts->duration; + return 0; + } + + if (time > ts->timeout_end) + return -ETIMEDOUT; + + /* + * A millisecond interval passed from last time? Trigger deadlock + * checks. + */ + if (prev + NSEC_PER_MSEC < time) { + ts->cur = time; + return check_deadlock(lock, mask, ts); + } + + return 0; +} + +/* + * Do not amortize with spins when res_smp_cond_load_acquire is defined, + * as the macro does internal amortization for us. + */ +#ifndef res_smp_cond_load_acquire +#define RES_CHECK_TIMEOUT(ts, ret, mask) \ + ({ \ + if (!(ts).spin++) \ + (ret) = check_timeout((lock), (mask), &(ts)); \ + (ret); \ + }) +#else +#define RES_CHECK_TIMEOUT(ts, ret, mask) \ + ({ (ret) = check_timeout(&(ts)); }) +#endif + +/* + * Initialize the 'spin' member. + * Set spin member to 0 to trigger AA/ABBA checks immediately. + */ +#define RES_INIT_TIMEOUT(ts) ({ (ts).spin = 0; }) + +/* + * We only need to reset 'timeout_end', 'spin' will just wrap around as necessary. + * Duration is defined for each spin attempt, so set it here. + */ +#define RES_RESET_TIMEOUT(ts, _duration) ({ (ts).timeout_end = 0; (ts).duration = _duration; }) + +/* + * Provide a test-and-set fallback for cases when queued spin lock support is + * absent from the architecture. + */ +int __lockfunc resilient_tas_spin_lock(rqspinlock_t *lock) +{ + struct rqspinlock_timeout ts; + int val, ret = 0; + + RES_INIT_TIMEOUT(ts); + grab_held_lock_entry(lock); + + /* + * Since the waiting loop's time is dependent on the amount of + * contention, a short timeout unlike rqspinlock waiting loops + * isn't enough. Choose a second as the timeout value. + */ + RES_RESET_TIMEOUT(ts, NSEC_PER_SEC); +retry: + val = atomic_read(&lock->val); + + if (val || !atomic_try_cmpxchg(&lock->val, &val, 1)) { + if (RES_CHECK_TIMEOUT(ts, ret, ~0u)) + goto out; + cpu_relax(); + goto retry; + } + + return 0; +out: + release_held_lock_entry(); + return ret; +} + +#ifdef CONFIG_QUEUED_SPINLOCKS + +/* + * Per-CPU queue node structures; we can never have more than 4 nested + * contexts: task, softirq, hardirq, nmi. + * + * Exactly fits one 64-byte cacheline on a 64-bit architecture. + */ +static DEFINE_PER_CPU_ALIGNED(struct qnode, rqnodes[_Q_MAX_NODES]); + +#ifndef res_smp_cond_load_acquire +#define res_smp_cond_load_acquire(v, c) smp_cond_load_acquire(v, c) +#endif + +#define res_atomic_cond_read_acquire(v, c) res_smp_cond_load_acquire(&(v)->counter, (c)) + +/** + * resilient_queued_spin_lock_slowpath - acquire the queued spinlock + * @lock: Pointer to queued spinlock structure + * @val: Current value of the queued spinlock 32-bit word + * + * (queue tail, pending bit, lock value) + * + * fast : slow : unlock + * : : + * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) + * : | ^--------.------. / : + * : v \ \ | : + * pending : (0,1,1) +--> (0,1,0) \ | : + * : | ^--' | | : + * : v | | : + * uncontended : (n,x,y) +--> (n,0,0) --' | : + * queue : | ^--' | : + * : v | : + * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : + * queue : ^--' : + */ +int __lockfunc resilient_queued_spin_lock_slowpath(rqspinlock_t *lock, u32 val) +{ + struct mcs_spinlock *prev, *next, *node; + struct rqspinlock_timeout ts; + int idx, ret = 0; + u32 old, tail; + + BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); + + if (resilient_virt_spin_lock_enabled()) + return resilient_virt_spin_lock(lock); + + RES_INIT_TIMEOUT(ts); + + /* + * Wait for in-progress pending->locked hand-overs with a bounded + * number of spins so that we guarantee forward progress. + * + * 0,1,0 -> 0,0,1 + */ + if (val == _Q_PENDING_VAL) { + int cnt = _Q_PENDING_LOOPS; + val = atomic_cond_read_relaxed(&lock->val, + (VAL != _Q_PENDING_VAL) || !cnt--); + } + + /* + * If we observe any contention; queue. + */ + if (val & ~_Q_LOCKED_MASK) + goto queue; + + /* + * trylock || pending + * + * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock + */ + val = queued_fetch_set_pending_acquire(lock); + + /* + * If we observe contention, there is a concurrent locker. + * + * Undo and queue; our setting of PENDING might have made the + * n,0,0 -> 0,0,0 transition fail and it will now be waiting + * on @next to become !NULL. + */ + if (unlikely(val & ~_Q_LOCKED_MASK)) { + + /* Undo PENDING if we set it. */ + if (!(val & _Q_PENDING_MASK)) + clear_pending(lock); + + goto queue; + } + + /* + * Grab an entry in the held locks array, to enable deadlock detection. + */ + grab_held_lock_entry(lock); + + /* + * We're pending, wait for the owner to go away. + * + * 0,1,1 -> *,1,0 + * + * this wait loop must be a load-acquire such that we match the + * store-release that clears the locked bit and create lock + * sequentiality; this is because not all + * clear_pending_set_locked() implementations imply full + * barriers. + */ + if (val & _Q_LOCKED_MASK) { + RES_RESET_TIMEOUT(ts, RES_DEF_TIMEOUT); + res_smp_cond_load_acquire(&lock->locked, !VAL || RES_CHECK_TIMEOUT(ts, ret, _Q_LOCKED_MASK)); + } + + if (ret) { + /* + * We waited for the locked bit to go back to 0, as the pending + * waiter, but timed out. We need to clear the pending bit since + * we own it. Once a stuck owner has been recovered, the lock + * must be restored to a valid state, hence removing the pending + * bit is necessary. + * + * *,1,* -> *,0,* + */ + clear_pending(lock); + lockevent_inc(rqspinlock_lock_timeout); + goto err_release_entry; + } + + /* + * take ownership and clear the pending bit. + * + * 0,1,0 -> 0,0,1 + */ + clear_pending_set_locked(lock); + lockevent_inc(lock_pending); + return 0; + + /* + * End of pending bit optimistic spinning and beginning of MCS + * queuing. + */ +queue: + lockevent_inc(lock_slowpath); + /* + * Grab deadlock detection entry for the queue path. + */ + grab_held_lock_entry(lock); + + node = this_cpu_ptr(&rqnodes[0].mcs); + idx = node->count++; + tail = encode_tail(smp_processor_id(), idx); + + trace_contention_begin(lock, LCB_F_SPIN); + + /* + * 4 nodes are allocated based on the assumption that there will + * not be nested NMIs taking spinlocks. That may not be true in + * some architectures even though the chance of needing more than + * 4 nodes will still be extremely unlikely. When that happens, + * we fall back to spinning on the lock directly without using + * any MCS node. This is not the most elegant solution, but is + * simple enough. + */ + if (unlikely(idx >= _Q_MAX_NODES)) { + lockevent_inc(lock_no_node); + RES_RESET_TIMEOUT(ts, RES_DEF_TIMEOUT); + while (!queued_spin_trylock(lock)) { + if (RES_CHECK_TIMEOUT(ts, ret, ~0u)) { + lockevent_inc(rqspinlock_lock_timeout); + goto err_release_node; + } + cpu_relax(); + } + goto release; + } + + node = grab_mcs_node(node, idx); + + /* + * Keep counts of non-zero index values: + */ + lockevent_cond_inc(lock_use_node2 + idx - 1, idx); + + /* + * Ensure that we increment the head node->count before initialising + * the actual node. If the compiler is kind enough to reorder these + * stores, then an IRQ could overwrite our assignments. + */ + barrier(); + + node->locked = 0; + node->next = NULL; + + /* + * We touched a (possibly) cold cacheline in the per-cpu queue node; + * attempt the trylock once more in the hope someone let go while we + * weren't watching. + */ + if (queued_spin_trylock(lock)) + goto release; + + /* + * Ensure that the initialisation of @node is complete before we + * publish the updated tail via xchg_tail() and potentially link + * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. + */ + smp_wmb(); + + /* + * Publish the updated tail. + * We have already touched the queueing cacheline; don't bother with + * pending stuff. + * + * p,*,* -> n,*,* + */ + old = xchg_tail(lock, tail); + next = NULL; + + /* + * if there was a previous node; link it and wait until reaching the + * head of the waitqueue. + */ + if (old & _Q_TAIL_MASK) { + int val; + + prev = decode_tail(old, rqnodes); + + /* Link @node into the waitqueue. */ + WRITE_ONCE(prev->next, node); + + val = arch_mcs_spin_lock_contended(&node->locked); + if (val == RES_TIMEOUT_VAL) { + ret = -EDEADLK; + goto waitq_timeout; + } + + /* + * While waiting for the MCS lock, the next pointer may have + * been set by another lock waiter. We optimistically load + * the next pointer & prefetch the cacheline for writing + * to reduce latency in the upcoming MCS unlock operation. + */ + next = READ_ONCE(node->next); + if (next) + prefetchw(next); + } + + /* + * we're at the head of the waitqueue, wait for the owner & pending to + * go away. + * + * *,x,y -> *,0,0 + * + * this wait loop must use a load-acquire such that we match the + * store-release that clears the locked bit and create lock + * sequentiality; this is because the set_locked() function below + * does not imply a full barrier. + * + * We use RES_DEF_TIMEOUT * 2 as the duration, as RES_DEF_TIMEOUT is + * meant to span maximum allowed time per critical section, and we may + * have both the owner of the lock and the pending bit waiter ahead of + * us. + */ + RES_RESET_TIMEOUT(ts, RES_DEF_TIMEOUT * 2); + val = res_atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK) || + RES_CHECK_TIMEOUT(ts, ret, _Q_LOCKED_PENDING_MASK)); + +waitq_timeout: + if (ret) { + /* + * If the tail is still pointing to us, then we are the final waiter, + * and are responsible for resetting the tail back to 0. Otherwise, if + * the cmpxchg operation fails, we signal the next waiter to take exit + * and try the same. For a waiter with tail node 'n': + * + * n,*,* -> 0,*,* + * + * When performing cmpxchg for the whole word (NR_CPUS > 16k), it is + * possible locked/pending bits keep changing and we see failures even + * when we remain the head of wait queue. However, eventually, + * pending bit owner will unset the pending bit, and new waiters + * will queue behind us. This will leave the lock owner in + * charge, and it will eventually either set locked bit to 0, or + * leave it as 1, allowing us to make progress. + * + * We terminate the whole wait queue for two reasons. Firstly, + * we eschew per-waiter timeouts with one applied at the head of + * the wait queue. This allows everyone to break out faster + * once we've seen the owner / pending waiter not responding for + * the timeout duration from the head. Secondly, it avoids + * complicated synchronization, because when not leaving in FIFO + * order, prev's next pointer needs to be fixed up etc. + */ + if (!try_cmpxchg_tail(lock, tail, 0)) { + next = smp_cond_load_relaxed(&node->next, VAL); + WRITE_ONCE(next->locked, RES_TIMEOUT_VAL); + } + lockevent_inc(rqspinlock_lock_timeout); + goto err_release_node; + } + + /* + * claim the lock: + * + * n,0,0 -> 0,0,1 : lock, uncontended + * *,*,0 -> *,*,1 : lock, contended + * + * If the queue head is the only one in the queue (lock value == tail) + * and nobody is pending, clear the tail code and grab the lock. + * Otherwise, we only need to grab the lock. + */ + + /* + * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the + * above wait condition, therefore any concurrent setting of + * PENDING will make the uncontended transition fail. + */ + if ((val & _Q_TAIL_MASK) == tail) { + if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) + goto release; /* No contention */ + } + + /* + * Either somebody is queued behind us or _Q_PENDING_VAL got set + * which will then detect the remaining tail and queue behind us + * ensuring we'll see a @next. + */ + set_locked(lock); + + /* + * contended path; wait for next if not observed yet, release. + */ + if (!next) + next = smp_cond_load_relaxed(&node->next, (VAL)); + + arch_mcs_spin_unlock_contended(&next->locked); + +release: + trace_contention_end(lock, 0); + + /* + * release the node + */ + __this_cpu_dec(rqnodes[0].mcs.count); + return ret; +err_release_node: + trace_contention_end(lock, ret); + __this_cpu_dec(rqnodes[0].mcs.count); +err_release_entry: + release_held_lock_entry(); + return ret; +} +EXPORT_SYMBOL(resilient_queued_spin_lock_slowpath); + +#endif /* CONFIG_QUEUED_SPINLOCKS */ + +__bpf_kfunc_start_defs(); + +#define REPORT_STR(ret) ({ ret == -ETIMEDOUT ? "Timeout detected" : "AA or ABBA deadlock detected"; }) + +__bpf_kfunc int bpf_res_spin_lock(struct bpf_res_spin_lock *lock) +{ + int ret; + + BUILD_BUG_ON(sizeof(rqspinlock_t) != sizeof(struct bpf_res_spin_lock)); + BUILD_BUG_ON(__alignof__(rqspinlock_t) != __alignof__(struct bpf_res_spin_lock)); + + preempt_disable(); + ret = res_spin_lock((rqspinlock_t *)lock); + if (unlikely(ret)) { + preempt_enable(); + rqspinlock_report_violation(REPORT_STR(ret), lock); + return ret; + } + return 0; +} + +__bpf_kfunc void bpf_res_spin_unlock(struct bpf_res_spin_lock *lock) +{ + res_spin_unlock((rqspinlock_t *)lock); + preempt_enable(); +} + +__bpf_kfunc int bpf_res_spin_lock_irqsave(struct bpf_res_spin_lock *lock, unsigned long *flags__irq_flag) +{ + u64 *ptr = (u64 *)flags__irq_flag; + unsigned long flags; + int ret; + + preempt_disable(); + local_irq_save(flags); + ret = res_spin_lock((rqspinlock_t *)lock); + if (unlikely(ret)) { + local_irq_restore(flags); + preempt_enable(); + rqspinlock_report_violation(REPORT_STR(ret), lock); + return ret; + } + *ptr = flags; + return 0; +} + +__bpf_kfunc void bpf_res_spin_unlock_irqrestore(struct bpf_res_spin_lock *lock, unsigned long *flags__irq_flag) +{ + u64 *ptr = (u64 *)flags__irq_flag; + unsigned long flags = *ptr; + + res_spin_unlock((rqspinlock_t *)lock); + local_irq_restore(flags); + preempt_enable(); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(rqspinlock_kfunc_ids) +BTF_ID_FLAGS(func, bpf_res_spin_lock, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_res_spin_unlock) +BTF_ID_FLAGS(func, bpf_res_spin_lock_irqsave, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_res_spin_unlock_irqrestore) +BTF_KFUNCS_END(rqspinlock_kfunc_ids) + +static const struct btf_kfunc_id_set rqspinlock_kfunc_set = { + .owner = THIS_MODULE, + .set = &rqspinlock_kfunc_ids, +}; + +static __init int rqspinlock_register_kfuncs(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &rqspinlock_kfunc_set); +} +late_initcall(rqspinlock_register_kfuncs); diff --git a/kernel/locking/rqspinlock.h b/kernel/locking/rqspinlock.h new file mode 100644 index 0000000000000..3cec3a0f2d7e1 --- /dev/null +++ b/kernel/locking/rqspinlock.h @@ -0,0 +1,48 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Resilient Queued Spin Lock defines + * + * (C) Copyright 2024 Meta Platforms, Inc. and affiliates. + * + * Authors: Kumar Kartikeya Dwivedi + */ +#ifndef __LINUX_RQSPINLOCK_H +#define __LINUX_RQSPINLOCK_H + +#include "qspinlock.h" + +/* + * try_cmpxchg_tail - Return result of cmpxchg of tail word with a new value + * @lock: Pointer to queued spinlock structure + * @tail: The tail to compare against + * @new_tail: The new queue tail code word + * Return: Bool to indicate whether the cmpxchg operation succeeded + * + * This is used by the head of the wait queue to clean up the queue. + * Provides relaxed ordering, since observers only rely on initialized + * state of the node which was made visible through the xchg_tail operation, + * i.e. through the smp_wmb preceding xchg_tail. + * + * We avoid using 16-bit cmpxchg, which is not available on all architectures. + */ +static __always_inline bool try_cmpxchg_tail(struct qspinlock *lock, u32 tail, u32 new_tail) +{ + u32 old, new; + + old = atomic_read(&lock->val); + do { + /* + * Is the tail part we compare to already stale? Fail. + */ + if ((old & _Q_TAIL_MASK) != tail) + return false; + /* + * Encode latest locked/pending state for new tail. + */ + new = (old & _Q_LOCKED_PENDING_MASK) | new_tail; + } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new)); + + return true; +} + +#endif /* __LINUX_RQSPINLOCK_H */ diff --git a/tools/testing/selftests/bpf/prog_tests/res_spin_lock.c b/tools/testing/selftests/bpf/prog_tests/res_spin_lock.c new file mode 100644 index 0000000000000..563d0d2801bb3 --- /dev/null +++ b/tools/testing/selftests/bpf/prog_tests/res_spin_lock.c @@ -0,0 +1,92 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include +#include + +#include "res_spin_lock.skel.h" +#include "res_spin_lock_fail.skel.h" + +void test_res_spin_lock_failure(void) +{ + RUN_TESTS(res_spin_lock_fail); +} + +static volatile int skip; + +static void *spin_lock_thread(void *arg) +{ + int err, prog_fd = *(u32 *) arg; + LIBBPF_OPTS(bpf_test_run_opts, topts, + .data_in = &pkt_v4, + .data_size_in = sizeof(pkt_v4), + .repeat = 10000, + ); + + while (!READ_ONCE(skip)) { + err = bpf_prog_test_run_opts(prog_fd, &topts); + ASSERT_OK(err, "test_run"); + ASSERT_OK(topts.retval, "test_run retval"); + } + pthread_exit(arg); +} + +void test_res_spin_lock_success(void) +{ + LIBBPF_OPTS(bpf_test_run_opts, topts, + .data_in = &pkt_v4, + .data_size_in = sizeof(pkt_v4), + .repeat = 1, + ); + struct res_spin_lock *skel; + pthread_t thread_id[16]; + int prog_fd, i, err; + void *ret; + + skel = res_spin_lock__open_and_load(); + if (!ASSERT_OK_PTR(skel, "res_spin_lock__open_and_load")) + return; + /* AA deadlock */ + prog_fd = bpf_program__fd(skel->progs.res_spin_lock_test); + err = bpf_prog_test_run_opts(prog_fd, &topts); + ASSERT_OK(err, "error"); + ASSERT_OK(topts.retval, "retval"); + + prog_fd = bpf_program__fd(skel->progs.res_spin_lock_test_held_lock_max); + err = bpf_prog_test_run_opts(prog_fd, &topts); + ASSERT_OK(err, "error"); + ASSERT_OK(topts.retval, "retval"); + + /* Multi-threaded ABBA deadlock. */ + + prog_fd = bpf_program__fd(skel->progs.res_spin_lock_test_AB); + for (i = 0; i < 16; i++) { + int err; + + err = pthread_create(&thread_id[i], NULL, &spin_lock_thread, &prog_fd); + if (!ASSERT_OK(err, "pthread_create")) + goto end; + } + + topts.retval = 0; + topts.repeat = 1000; + int fd = bpf_program__fd(skel->progs.res_spin_lock_test_BA); + while (!topts.retval && !err && !READ_ONCE(skel->bss->err)) { + err = bpf_prog_test_run_opts(fd, &topts); + } + + WRITE_ONCE(skip, true); + + for (i = 0; i < 16; i++) { + if (!ASSERT_OK(pthread_join(thread_id[i], &ret), "pthread_join")) + goto end; + if (!ASSERT_EQ(ret, &prog_fd, "ret == prog_fd")) + goto end; + } + + ASSERT_EQ(READ_ONCE(skel->bss->err), -EDEADLK, "timeout err"); + ASSERT_OK(err, "err"); + ASSERT_EQ(topts.retval, -EDEADLK, "timeout"); +end: + res_spin_lock__destroy(skel); + return; +} diff --git a/tools/testing/selftests/bpf/progs/irq.c b/tools/testing/selftests/bpf/progs/irq.c index 298d48d7886d9..74d912b22de90 100644 --- a/tools/testing/selftests/bpf/progs/irq.c +++ b/tools/testing/selftests/bpf/progs/irq.c @@ -11,6 +11,9 @@ extern void bpf_local_irq_save(unsigned long *) __weak __ksym; extern void bpf_local_irq_restore(unsigned long *) __weak __ksym; extern int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void *unsafe_ptr__ign, u64 flags) __weak __ksym; +struct bpf_res_spin_lock lockA __hidden SEC(".data.A"); +struct bpf_res_spin_lock lockB __hidden SEC(".data.B"); + SEC("?tc") __failure __msg("arg#0 doesn't point to an irq flag on stack") int irq_save_bad_arg(struct __sk_buff *ctx) @@ -510,4 +513,54 @@ int irq_sleepable_global_subprog_indirect(void *ctx) return 0; } +SEC("?tc") +__failure __msg("cannot restore irq state out of order") +int irq_ooo_lock_cond_inv(struct __sk_buff *ctx) +{ + unsigned long flags1, flags2; + + if (bpf_res_spin_lock_irqsave(&lockA, &flags1)) + return 0; + if (bpf_res_spin_lock_irqsave(&lockB, &flags2)) { + bpf_res_spin_unlock_irqrestore(&lockA, &flags1); + return 0; + } + + bpf_res_spin_unlock_irqrestore(&lockB, &flags1); + bpf_res_spin_unlock_irqrestore(&lockA, &flags2); + return 0; +} + +SEC("?tc") +__failure __msg("function calls are not allowed") +int irq_wrong_kfunc_class_1(struct __sk_buff *ctx) +{ + unsigned long flags1; + + if (bpf_res_spin_lock_irqsave(&lockA, &flags1)) + return 0; + /* For now, bpf_local_irq_restore is not allowed in critical section, + * but this test ensures error will be caught with kfunc_class when it's + * opened up. Tested by temporarily permitting this kfunc in critical + * section. + */ + bpf_local_irq_restore(&flags1); + bpf_res_spin_unlock_irqrestore(&lockA, &flags1); + return 0; +} + +SEC("?tc") +__failure __msg("function calls are not allowed") +int irq_wrong_kfunc_class_2(struct __sk_buff *ctx) +{ + unsigned long flags1, flags2; + + bpf_local_irq_save(&flags1); + if (bpf_res_spin_lock_irqsave(&lockA, &flags2)) + return 0; + bpf_local_irq_restore(&flags2); + bpf_res_spin_unlock_irqrestore(&lockA, &flags1); + return 0; +} + char _license[] SEC("license") = "GPL"; diff --git a/tools/testing/selftests/bpf/progs/res_spin_lock.c b/tools/testing/selftests/bpf/progs/res_spin_lock.c new file mode 100644 index 0000000000000..40ac06c917799 --- /dev/null +++ b/tools/testing/selftests/bpf/progs/res_spin_lock.c @@ -0,0 +1,143 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include +#include +#include +#include "bpf_misc.h" + +#define EDEADLK 35 +#define ETIMEDOUT 110 + +struct arr_elem { + struct bpf_res_spin_lock lock; +}; + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY); + __uint(max_entries, 64); + __type(key, int); + __type(value, struct arr_elem); +} arrmap SEC(".maps"); + +struct bpf_res_spin_lock lockA __hidden SEC(".data.A"); +struct bpf_res_spin_lock lockB __hidden SEC(".data.B"); + +SEC("tc") +int res_spin_lock_test(struct __sk_buff *ctx) +{ + struct arr_elem *elem1, *elem2; + int r; + + elem1 = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem1) + return -1; + elem2 = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem2) + return -1; + + r = bpf_res_spin_lock(&elem1->lock); + if (r) + return r; + if (!bpf_res_spin_lock(&elem2->lock)) { + bpf_res_spin_unlock(&elem2->lock); + bpf_res_spin_unlock(&elem1->lock); + return -1; + } + bpf_res_spin_unlock(&elem1->lock); + return 0; +} + +SEC("tc") +int res_spin_lock_test_AB(struct __sk_buff *ctx) +{ + int r; + + r = bpf_res_spin_lock(&lockA); + if (r) + return !r; + /* Only unlock if we took the lock. */ + if (!bpf_res_spin_lock(&lockB)) + bpf_res_spin_unlock(&lockB); + bpf_res_spin_unlock(&lockA); + return 0; +} + +int err; + +SEC("tc") +int res_spin_lock_test_BA(struct __sk_buff *ctx) +{ + int r; + + r = bpf_res_spin_lock(&lockB); + if (r) + return !r; + if (!bpf_res_spin_lock(&lockA)) + bpf_res_spin_unlock(&lockA); + else + err = -EDEADLK; + bpf_res_spin_unlock(&lockB); + return err ?: 0; +} + +SEC("tc") +int res_spin_lock_test_held_lock_max(struct __sk_buff *ctx) +{ + struct bpf_res_spin_lock *locks[48] = {}; + struct arr_elem *e; + u64 time_beg, time; + int ret = 0, i; + + _Static_assert(ARRAY_SIZE(((struct rqspinlock_held){}).locks) == 31, + "RES_NR_HELD assumed to be 31"); + + for (i = 0; i < 34; i++) { + int key = i; + + /* We cannot pass in i as it will get spilled/filled by the compiler and + * loses bounds in verifier state. + */ + e = bpf_map_lookup_elem(&arrmap, &key); + if (!e) + return 1; + locks[i] = &e->lock; + } + + for (; i < 48; i++) { + int key = i - 2; + + /* We cannot pass in i as it will get spilled/filled by the compiler and + * loses bounds in verifier state. + */ + e = bpf_map_lookup_elem(&arrmap, &key); + if (!e) + return 1; + locks[i] = &e->lock; + } + + time_beg = bpf_ktime_get_ns(); + for (i = 0; i < 34; i++) { + if (bpf_res_spin_lock(locks[i])) + goto end; + } + + /* Trigger AA, after exhausting entries in the held lock table. This + * time, only the timeout can save us, as AA detection won't succeed. + */ + if (!bpf_res_spin_lock(locks[34])) { + bpf_res_spin_unlock(locks[34]); + ret = 1; + goto end; + } + +end: + for (i = i - 1; i >= 0; i--) + bpf_res_spin_unlock(locks[i]); + time = bpf_ktime_get_ns() - time_beg; + /* Time spent should be easily above our limit (1/4 s), since AA + * detection won't be expedited due to lack of held lock entry. + */ + return ret ?: (time > 1000000000 / 4 ? 0 : 1); +} + +char _license[] SEC("license") = "GPL"; diff --git a/tools/testing/selftests/bpf/progs/res_spin_lock_fail.c b/tools/testing/selftests/bpf/progs/res_spin_lock_fail.c new file mode 100644 index 0000000000000..3222e9283c784 --- /dev/null +++ b/tools/testing/selftests/bpf/progs/res_spin_lock_fail.c @@ -0,0 +1,244 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include +#include +#include +#include +#include "bpf_misc.h" +#include "bpf_experimental.h" + +struct arr_elem { + struct bpf_res_spin_lock lock; +}; + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY); + __uint(max_entries, 1); + __type(key, int); + __type(value, struct arr_elem); +} arrmap SEC(".maps"); + +long value; + +struct bpf_spin_lock lock __hidden SEC(".data.A"); +struct bpf_res_spin_lock res_lock __hidden SEC(".data.B"); + +SEC("?tc") +__failure __msg("point to map value or allocated object") +int res_spin_lock_arg(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + bpf_res_spin_lock((struct bpf_res_spin_lock *)bpf_core_cast(&elem->lock, struct __sk_buff)); + bpf_res_spin_lock(&elem->lock); + return 0; +} + +SEC("?tc") +__failure __msg("AA deadlock detected") +int res_spin_lock_AA(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + bpf_res_spin_lock(&elem->lock); + bpf_res_spin_lock(&elem->lock); + return 0; +} + +SEC("?tc") +__failure __msg("AA deadlock detected") +int res_spin_lock_cond_AA(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock(&elem->lock)) + return 0; + bpf_res_spin_lock(&elem->lock); + return 0; +} + +SEC("?tc") +__failure __msg("unlock of different lock") +int res_spin_lock_mismatch_1(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock(&elem->lock)) + return 0; + bpf_res_spin_unlock(&res_lock); + return 0; +} + +SEC("?tc") +__failure __msg("unlock of different lock") +int res_spin_lock_mismatch_2(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock(&res_lock)) + return 0; + bpf_res_spin_unlock(&elem->lock); + return 0; +} + +SEC("?tc") +__failure __msg("unlock of different lock") +int res_spin_lock_irq_mismatch_1(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + unsigned long f1; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + bpf_local_irq_save(&f1); + if (bpf_res_spin_lock(&res_lock)) + return 0; + bpf_res_spin_unlock_irqrestore(&res_lock, &f1); + return 0; +} + +SEC("?tc") +__failure __msg("unlock of different lock") +int res_spin_lock_irq_mismatch_2(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + unsigned long f1; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock_irqsave(&res_lock, &f1)) + return 0; + bpf_res_spin_unlock(&res_lock); + return 0; +} + +SEC("?tc") +__success +int res_spin_lock_ooo(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock(&res_lock)) + return 0; + if (bpf_res_spin_lock(&elem->lock)) { + bpf_res_spin_unlock(&res_lock); + return 0; + } + bpf_res_spin_unlock(&elem->lock); + bpf_res_spin_unlock(&res_lock); + return 0; +} + +SEC("?tc") +__success +int res_spin_lock_ooo_irq(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + unsigned long f1, f2; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + if (bpf_res_spin_lock_irqsave(&res_lock, &f1)) + return 0; + if (bpf_res_spin_lock_irqsave(&elem->lock, &f2)) { + bpf_res_spin_unlock_irqrestore(&res_lock, &f1); + /* We won't have a unreleased IRQ flag error here. */ + return 0; + } + bpf_res_spin_unlock_irqrestore(&elem->lock, &f2); + bpf_res_spin_unlock_irqrestore(&res_lock, &f1); + return 0; +} + +struct bpf_res_spin_lock lock1 __hidden SEC(".data.OO1"); +struct bpf_res_spin_lock lock2 __hidden SEC(".data.OO2"); + +SEC("?tc") +__failure __msg("bpf_res_spin_unlock cannot be out of order") +int res_spin_lock_ooo_unlock(struct __sk_buff *ctx) +{ + if (bpf_res_spin_lock(&lock1)) + return 0; + if (bpf_res_spin_lock(&lock2)) { + bpf_res_spin_unlock(&lock1); + return 0; + } + bpf_res_spin_unlock(&lock1); + bpf_res_spin_unlock(&lock2); + return 0; +} + +SEC("?tc") +__failure __msg("off 1 doesn't point to 'struct bpf_res_spin_lock' that is at 0") +int res_spin_lock_bad_off(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) + return 0; + bpf_res_spin_lock((void *)&elem->lock + 1); + return 0; +} + +SEC("?tc") +__failure __msg("R1 doesn't have constant offset. bpf_res_spin_lock has to be at the constant offset") +int res_spin_lock_var_off(struct __sk_buff *ctx) +{ + struct arr_elem *elem; + u64 val = value; + + elem = bpf_map_lookup_elem(&arrmap, &(int){0}); + if (!elem) { + // FIXME: Only inline assembly use in assert macro doesn't emit + // BTF definition. + bpf_throw(0); + return 0; + } + bpf_assert_range(val, 0, 40); + bpf_res_spin_lock((void *)&value + val); + return 0; +} + +SEC("?tc") +__failure __msg("map 'res_spin.bss' has no valid bpf_res_spin_lock") +int res_spin_lock_no_lock_map(struct __sk_buff *ctx) +{ + bpf_res_spin_lock((void *)&value + 1); + return 0; +} + +SEC("?tc") +__failure __msg("local 'kptr' has no valid bpf_res_spin_lock") +int res_spin_lock_no_lock_kptr(struct __sk_buff *ctx) +{ + struct { int i; } *p = bpf_obj_new(typeof(*p)); + + if (!p) + return 0; + bpf_res_spin_lock((void *)p); + return 0; +} + +char _license[] SEC("license") = "GPL";