Skip to content

Latest commit

 

History

History
175 lines (141 loc) · 4.82 KB

File metadata and controls

175 lines (141 loc) · 4.82 KB

English Version

题目描述

给定两个字符串s1 和 s2,返回 使两个字符串相等所需删除字符的 ASCII 值的最小和 

 

示例 1:

输入: s1 = "sea", s2 = "eat"
输出: 231
解释: 在 "sea" 中删除 "s" 并将 "s" 的值(115)加入总和。
在 "eat" 中删除 "t" 并将 116 加入总和。
结束时,两个字符串相等,115 + 116 = 231 就是符合条件的最小和。

示例 2:

输入: s1 = "delete", s2 = "leet"
输出: 403
解释: 在 "delete" 中删除 "dee" 字符串变成 "let",
将 100[d]+101[e]+101[e] 加入总和。在 "leet" 中删除 "e" 将 101[e] 加入总和。
结束时,两个字符串都等于 "let",结果即为 100+101+101+101 = 403 。
如果改为将两个字符串转换为 "lee" 或 "eet",我们会得到 433 或 417 的结果,比答案更大。

 

提示:

  • 0 <= s1.length, s2.length <= 1000
  • s1 和 s2 由小写英文字母组成

解法

方法一:动态规划

类似1143. 最长公共子序列

定义 dp[i][j] 表示使得 s1[0:i-1]s2[0:j-1] 两个字符串相等所需删除的字符的 ASCII 值的最小值。

时间复杂度 O(mn)。

Python3

class Solution:
    def minimumDeleteSum(self, s1: str, s2: str) -> int:
        m, n = len(s1), len(s2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            dp[i][0] = dp[i - 1][0] + ord(s1[i - 1])
        for j in range(1, n + 1):
            dp[0][j] = dp[0][j - 1] + ord(s2[j - 1])
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if s1[i - 1] == s2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(
                        dp[i - 1][j] + ord(s1[i - 1]), dp[i][j - 1] + ord(s2[j - 1])
                    )
        return dp[-1][-1]

Java

class Solution {
    public int minimumDeleteSum(String s1, String s2) {
        int m = s1.length(), n = s2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            dp[i][0] = dp[i - 1][0] + s1.codePointAt(i - 1);
        }
        for (int j = 1; j <= n; ++j) {
            dp[0][j] = dp[0][j - 1] + s2.codePointAt(j - 1);
        }
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(
                        dp[i - 1][j] + s1.codePointAt(i - 1), dp[i][j - 1] + s2.codePointAt(j - 1));
                }
            }
        }
        return dp[m][n];
    }
}

C++

class Solution {
public:
    int minimumDeleteSum(string s1, string s2) {
        int m = s1.size(), n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for (int i = 1; i <= m; ++i) dp[i][0] = dp[i - 1][0] + s1[i - 1];
        for (int j = 1; j <= n; ++j) dp[0][j] = dp[0][j - 1] + s2[j - 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (s1[i - 1] == s2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1];
                else
                    dp[i][j] = min(dp[i - 1][j] + s1[i - 1], dp[i][j - 1] + s2[j - 1]);
            }
        }
        return dp[m][n];
    }
};

Go

func minimumDeleteSum(s1 string, s2 string) int {
	m, n := len(s1), len(s2)
	dp := make([][]int, m+1)
	for i := range dp {
		dp[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		dp[i][0] = dp[i-1][0] + int(s1[i-1])
	}
	for j := 1; j <= n; j++ {
		dp[0][j] = dp[0][j-1] + int(s2[j-1])
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			if s1[i-1] == s2[j-1] {
				dp[i][j] = dp[i-1][j-1]
			} else {
				dp[i][j] = min(dp[i-1][j]+int(s1[i-1]), dp[i][j-1]+int(s2[j-1]))
			}
		}
	}
	return dp[m][n]
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...