Skip to content

Latest commit

 

History

History
204 lines (156 loc) · 4.76 KB

File metadata and controls

204 lines (156 loc) · 4.76 KB

题目描述

给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数 target 的唯一组合。

candidates 中的数字可以无限制重复被选取。如果至少一个所选数字数量不同,则两种组合是唯一的。 

对于给定的输入,保证和为 target 的唯一组合数少于 150 个。

 

示例 1:

输入: candidates = [2,3,6,7], target = 7
输出: [[7],[2,2,3]]

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

示例 4:

输入: candidates = [1], target = 1
输出: [[1]]

示例 5:

输入: candidates = [1], target = 2
输出: [[1,1]]

 

提示:

  • 1 <= candidates.length <= 30
  • 1 <= candidates[i] <= 200
  • candidate 中的每个元素都是独一无二的。
  • 1 <= target <= 500

 

注意:本题与主站 39 题相同: https://leetcode.cn/problems/combination-sum/

解法

DFS。

为了避免重复方案,需要定义一个搜索起点。

Python3

class Solution:
    def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
        ans = []
        n = len(candidates)

        def dfs(s, u, t):
            if s == target:
                ans.append(t.copy())
                return
            if s > target:
                return
            for i in range(u, n):
                c = candidates[i]
                t.append(c)
                dfs(s + c, i, t)
                t.pop()

        dfs(0, 0, [])
        return ans

Java

class Solution {
    private List<List<Integer>> ans;
    private int target;
    private int[] candidates;

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        ans = new ArrayList<>();
        this.target = target;
        this.candidates = candidates;
        dfs(0, 0, new ArrayList<>());
        return ans;
    }

    private void dfs(int s, int u, List<Integer> t) {
        if (s == target) {
            ans.add(new ArrayList<>(t));
            return;
        }
        if (s > target) {
            return;
        }
        for (int i = u; i < candidates.length; ++i) {
            int c = candidates[i];
            t.add(c);
            dfs(s + c, i, t);
            t.remove(t.size() - 1);
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> ans;
    vector<int> candidates;
    int target;

    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        this->candidates = candidates;
        this->target = target;
        vector<int> t;
        dfs(0, 0, t);
        return ans;
    }

    void dfs(int s, int u, vector<int>& t) {
        if (s == target) {
            ans.push_back(t);
            return;
        }
        if (s > target) return;
        for (int i = u; i < candidates.size(); ++i) {
            int c = candidates[i];
            t.push_back(c);
            dfs(s + c, i, t);
            t.pop_back();
        }
    }
};

Go

func combinationSum(candidates []int, target int) [][]int {
	var ans [][]int

	var dfs func(s, u int, t []int)
	dfs = func(s, u int, t []int) {
		if s == target {
			ans = append(ans, append([]int(nil), t...))
			return
		}
		if s > target {
			return
		}
		for i := u; i < len(candidates); i++ {
			c := candidates[i]
			t = append(t, c)
			dfs(s+c, i, t)
			t = t[:len(t)-1]
		}
	}

	var t []int
	dfs(0, 0, t)
	return ans
}

...