Skip to content

Latest commit

 

History

History
186 lines (143 loc) · 4.05 KB

File metadata and controls

186 lines (143 loc) · 4.05 KB

题目描述

符合下列属性的数组 arr 称为 山峰数组山脉数组)

  • arr.length >= 3
  • 存在 i0 < i < arr.length - 1)使得:
    • arr[0] < arr[1] < ... arr[i-1] < arr[i]
    • arr[i] > arr[i+1] > ... > arr[arr.length - 1]

给定由整数组成的山峰数组 arr ,返回任何满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1] 的下标 i ,即山峰顶部。

 

示例 1:

输入:arr = [0,1,0]
输出:1

示例 2:

输入:arr = [1,3,5,4,2]
输出:2

示例 3:

输入:arr = [0,10,5,2]
输出:1

示例 4:

输入:arr = [3,4,5,1]
输出:2

示例 5:

输入:arr = [24,69,100,99,79,78,67,36,26,19]
输出:2

 

提示:

  • 3 <= arr.length <= 104
  • 0 <= arr[i] <= 106
  • 题目数据保证 arr 是一个山脉数组

 

进阶:很容易想到时间复杂度 O(n) 的解决方案,你可以设计一个 O(log(n)) 的解决方案吗?

 

注意:本题与主站 852 题相同:https://leetcode.cn/problems/peak-index-in-a-mountain-array/

解法

二分查找。

Python3

class Solution:
    def peakIndexInMountainArray(self, arr: List[int]) -> int:
        left, right = 1, len(arr) - 2
        while left < right:
            mid = (left + right) >> 1
            if arr[mid] > arr[mid + 1]:
                right = mid
            else:
                left = mid + 1
        return left

Java

class Solution {
    public int peakIndexInMountainArray(int[] arr) {
        int left = 1, right = arr.length - 2;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arr[mid] > arr[mid + 1]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        int left = 1, right = arr.size() - 2;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arr[mid] > arr[mid + 1])
                right = mid;
            else
                left = mid + 1;
        }
        return left;
    }
};

Go

func peakIndexInMountainArray(arr []int) int {
	left, right := 1, len(arr)-2
	for left < right {
		mid := (left + right) >> 1
		if arr[mid] > arr[mid+1] {
			right = mid
		} else {
			left = mid + 1
		}
	}
	return left
}

JavaScript

/**
 * @param {number[]} arr
 * @return {number}
 */
var peakIndexInMountainArray = function (arr) {
    let left = 1;
    let right = arr.length - 2;
    while (left < right) {
        const mid = (left + right) >> 1;
        if (arr[mid] < arr[mid + 1]) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    return left;
};

...