检查子树。你有两棵非常大的二叉树:T1,有几万个节点;T2,有几万个节点。设计一个算法,判断 T2 是否为 T1 的子树。
如果 T1 有这么一个节点 n,其子树与 T2 一模一样,则 T2 为 T1 的子树,也就是说,从节点 n 处把树砍断,得到的树与 T2 完全相同。
示例1:
输入:t1 = [1, 2, 3], t2 = [2] 输出:true
示例2:
输入:t1 = [1, null, 2, 4], t2 = [3, 2] 输出:false
提示:
- 树的节点数目范围为[0, 20000]。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def checkSubTree(self, t1: TreeNode, t2: TreeNode) -> bool:
def dfs(t1, t2):
if t2 is None:
return True
if t1 is None:
return False
if t1.val == t2.val:
return dfs(t1.left, t2.left) and dfs(t1.right, t2.right)
return dfs(t1.left, t2) or dfs(t1.right, t2)
return dfs(t1, t2)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean checkSubTree(TreeNode t1, TreeNode t2) {
if (t2 == null) {
return true;
}
if (t1 == null) {
return false;
}
if (t1.val == t2.val) {
return checkSubTree(t1.left, t2.left) && checkSubTree(t1.right, t2.right);
}
return checkSubTree(t1.left, t2) || checkSubTree(t1.right, t2);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool checkSubTree(TreeNode* t1, TreeNode* t2) {
if (!t2) return 1;
if (!t1) return 0;
if (t1->val == t2->val) return checkSubTree(t1->left, t2->left) && checkSubTree(t1->right, t2->right);
return checkSubTree(t1->left, t2) || checkSubTree(t1->right, t2);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func checkSubTree(t1 *TreeNode, t2 *TreeNode) bool {
if t2 == nil {
return true
}
if t1 == nil {
return false
}
if t1.Val == t2.Val {
return checkSubTree(t1.Left, t2.Left) && checkSubTree(t1.Right, t2.Right)
}
return checkSubTree(t1.Left, t2) || checkSubTree(t1.Right, t2)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function checkSubTree(t1: TreeNode | null, t2: TreeNode | null): boolean {
if (t1 == null && t2 == null) {
return true;
}
if (t1 == null || t2 == null) {
return false;
}
if (t1.val === t2.val) {
return (
checkSubTree(t1.left, t2.left) && checkSubTree(t1.right, t2.right)
);
}
return checkSubTree(t1.left, t2) || checkSubTree(t1.right, t2);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn dfs(t1: &Option<Rc<RefCell<TreeNode>>>, t2: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if t1.is_none() && t2.is_none() {
return true;
}
if t1.is_none() || t2.is_none() {
return false;
}
let r1 = t1.as_ref().unwrap().borrow();
let r2 = t2.as_ref().unwrap().borrow();
if r1.val == r2.val {
return Self::dfs(&r1.left, &r2.left) && Self::dfs(&r1.right, &r2.right);
}
Self::dfs(&r1.left, t2) || Self::dfs(&r1.right, t2)
}
pub fn check_sub_tree(
t1: Option<Rc<RefCell<TreeNode>>>,
t2: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
Self::dfs(&t1, &t2)
}
}