|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# ALL IMPORT STATEMENT" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import numpy as np\n", |
| 17 | + "from numpy import linalg\n", |
| 18 | + "import scipy.io as spio" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "# FUNCTION TO CALCULATE CONFUSING MATRIX, ACCURACY AND FM" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "def confusionMatrix(y_actual, y_predicted):\n", |
| 35 | + " tp = 0\n", |
| 36 | + " tn = 0\n", |
| 37 | + " fp = 0\n", |
| 38 | + " fn = 0\n", |
| 39 | + " \n", |
| 40 | + " for i in range(len(y_actual)):\n", |
| 41 | + " if y_actual[i] > 0:\n", |
| 42 | + " if y_actual[i] == y_predicted[i]:\n", |
| 43 | + " tp = tp + 1\n", |
| 44 | + " else:\n", |
| 45 | + " fn = fn + 1\n", |
| 46 | + " if y_actual[i] < 1:\n", |
| 47 | + " if y_actual[i] == y_predicted[i]:\n", |
| 48 | + " tn = tn + 1\n", |
| 49 | + " else:\n", |
| 50 | + " fp = fp + 1\n", |
| 51 | + " \n", |
| 52 | + " cm = [[tn, fp], [fn, tp]]\n", |
| 53 | + " accuracy = (tp+tn)/(tp+tn+fp+fn)\n", |
| 54 | + " sens = tp/(tp+fn)\n", |
| 55 | + " prec = tp/(tp+fp)\n", |
| 56 | + " fm = (2*prec*sens)/(prec+sens)\n", |
| 57 | + " return cm, accuracy, fm" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "markdown", |
| 62 | + "metadata": {}, |
| 63 | + "source": [ |
| 64 | + "# FUNCTION FOR EACH SVM KERNEL" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "def linear_kernel(x1, x2):\n", |
| 74 | + " return np.dot(x1, x2)\n", |
| 75 | + " \n", |
| 76 | + "def polynomial_kernel(x, y, p=3):\n", |
| 77 | + " return (1 + np.dot(x, y)) ** p\n", |
| 78 | + "\n", |
| 79 | + "def gaussian_kernel(x, y, sigma=5.0):\n", |
| 80 | + " return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2)))" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "# SVM CLASS WITH TRAIN AND PREDICT FUNCTION" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "class SVM(object):\n", |
| 97 | + " \n", |
| 98 | + " def __init__(self, kernel=linear_kernel, tol=1e-3, C=0.1, max_passes=5):\n", |
| 99 | + " \n", |
| 100 | + " self.kernel = kernel\n", |
| 101 | + " self.tol = tol\n", |
| 102 | + " self.C = C\n", |
| 103 | + " self.max_passes = max_passes\n", |
| 104 | + " self.model = dict()\n", |
| 105 | + " \n", |
| 106 | + " def svmTrain(self, X, Y):\n", |
| 107 | + " # Data parameters\n", |
| 108 | + " m = X.shape[0]\n", |
| 109 | + " \n", |
| 110 | + " # Map 0 to -1\n", |
| 111 | + " Y = np.where(Y == 0, -1, 1)\n", |
| 112 | + " \n", |
| 113 | + " # Variables\n", |
| 114 | + " alphas = np.zeros((m, 1), dtype=float)\n", |
| 115 | + " b = 0.0\n", |
| 116 | + " E = np.zeros((m, 1),dtype=float)\n", |
| 117 | + " passes = 0\n", |
| 118 | + " \n", |
| 119 | + " # Precompute the kernel matrix\n", |
| 120 | + " if self.kernel == linear_kernel:\n", |
| 121 | + " print('Precomputing the kernel matrix')\n", |
| 122 | + " K = X @ X.T\n", |
| 123 | + " elif self.kernel == gaussian_kernel:\n", |
| 124 | + " print('Precomputing the kernel matrix')\n", |
| 125 | + " X2 = np.sum(np.power(X, 2), axis=1).reshape(-1, 1)\n", |
| 126 | + " K = X2 + (X2.T - (2 * (X @ X.T)))\n", |
| 127 | + " K = np.power(self.kernel(1, 0), K)\n", |
| 128 | + " else:\n", |
| 129 | + " # Pre-compute the Kernel Matrix\n", |
| 130 | + " # The following can be slow due to lack of vectorization\n", |
| 131 | + " print('Precomputing the kernel matrix')\n", |
| 132 | + " K = np.zeros((m, m))\n", |
| 133 | + " for i in range(m):\n", |
| 134 | + " for j in range(m):\n", |
| 135 | + " x1 = np.transpose(X[i, :])\n", |
| 136 | + " x2 = np.transpose(X[j, :])\n", |
| 137 | + " K[i, j] = self.kernel(x1, x2)\n", |
| 138 | + " K[i, j] = K[j, i]\n", |
| 139 | + " \n", |
| 140 | + " print('Training...')\n", |
| 141 | + " print('This may take 1 to 2 minutes')\n", |
| 142 | + "\n", |
| 143 | + " while passes < self.max_passes:\n", |
| 144 | + " num_changed_alphas = 0\n", |
| 145 | + " \n", |
| 146 | + " for i in range(m):\n", |
| 147 | + "\n", |
| 148 | + " E[i] = b + np.sum( alphas * Y * K[:, i].reshape(-1, 1)) - Y[i]\n", |
| 149 | + "\n", |
| 150 | + " if (Y[i] * E[i] < -self.tol and alphas[i] < self.C) or (Y[i] * E[i] > self.tol and alphas[i] > 0):\n", |
| 151 | + " j = np.random.randint(0, m)\n", |
| 152 | + " while j == i:\n", |
| 153 | + " # make sure i is not equal to j\n", |
| 154 | + " j = np.random.randint(0, m)\n", |
| 155 | + "\n", |
| 156 | + " E[j] = b + np.sum(alphas * Y * K[:, j].reshape(-1, 1)) - Y[j]\n", |
| 157 | + "\n", |
| 158 | + " # Save old alphas\n", |
| 159 | + " alpha_i_old = alphas[i, 0]\n", |
| 160 | + " alpha_j_old = alphas[j, 0]\n", |
| 161 | + "\n", |
| 162 | + " # Compute L and H by (10) or (11)\n", |
| 163 | + " if Y[i] == Y[j]:\n", |
| 164 | + " L = max(0, alphas[j] + alphas[i] - self.C)\n", |
| 165 | + " H = min(self.C, alphas[j] + alphas[i])\n", |
| 166 | + " else:\n", |
| 167 | + " L = max(0, alphas[j] - alphas[i])\n", |
| 168 | + " H = min(self.C, self.C + alphas[j] - alphas[i])\n", |
| 169 | + " if L == H:\n", |
| 170 | + " # continue to next i\n", |
| 171 | + " continue\n", |
| 172 | + "\n", |
| 173 | + " # compute eta by (14)\n", |
| 174 | + " eta = 2 * K[i, j] - K[i, i] - K[j, j]\n", |
| 175 | + " if eta >= 0:\n", |
| 176 | + " # continue to next i\n", |
| 177 | + " continue\n", |
| 178 | + "\n", |
| 179 | + " # compute and clip new value for alpha j using (12) and (15)\n", |
| 180 | + " alphas[j] = alphas[j] - (Y[j] * (E[i] - E[j])) / eta\n", |
| 181 | + "\n", |
| 182 | + " # Clip\n", |
| 183 | + " alphas[j] = min(H, alphas[j])\n", |
| 184 | + " alphas[j] = max(L, alphas[j])\n", |
| 185 | + "\n", |
| 186 | + " # Check if change in alpha is significant\n", |
| 187 | + " if np.abs(alphas[j] - alpha_j_old) < self.tol:\n", |
| 188 | + " # continue to the next i\n", |
| 189 | + " # replace anyway\n", |
| 190 | + " alphas[j] = alpha_j_old\n", |
| 191 | + " continue\n", |
| 192 | + "\n", |
| 193 | + " # Determine value for alpha i using (16)\n", |
| 194 | + " alphas[i] = alphas[i] + Y[i] * Y[j] * (alpha_j_old - alphas[j])\n", |
| 195 | + "\n", |
| 196 | + " # Compute b1 and b2 using (17) and (18) respectively.\n", |
| 197 | + " b1 = b - E[i] - Y[i] * (alphas[i] - alpha_i_old) * K[i, j] - Y[j] * (alphas[j] - alpha_j_old) * K[i, j]\n", |
| 198 | + " \n", |
| 199 | + " b2 = b - E[j] - Y[i] * (alphas[i] - alpha_i_old) * K[i, j] - Y[j] * (alphas[j] - alpha_j_old) * K[j, j]\n", |
| 200 | + " \n", |
| 201 | + " # Compute b by (19).\n", |
| 202 | + " if 0 < alphas[i] and alphas[i] < self.C:\n", |
| 203 | + " b = b1\n", |
| 204 | + " elif 0 < alphas[j] and alphas[j] < self.C:\n", |
| 205 | + " b = b2\n", |
| 206 | + " else:\n", |
| 207 | + " b = (b1 + b2) / 2\n", |
| 208 | + " num_changed_alphas = num_changed_alphas + 1\n", |
| 209 | + "\n", |
| 210 | + " if num_changed_alphas == 0:\n", |
| 211 | + " passes = passes + 1\n", |
| 212 | + " else:\n", |
| 213 | + " passes = 0\n", |
| 214 | + "\n", |
| 215 | + " print('....')\n", |
| 216 | + "\n", |
| 217 | + " print(' DONE! ')\n", |
| 218 | + "\n", |
| 219 | + " # Save the model\n", |
| 220 | + " idx = alphas > 0\n", |
| 221 | + " \n", |
| 222 | + " self.model['X'] = X[idx.reshape(1, -1)[0], :]\n", |
| 223 | + " self.model['y'] = Y[idx.reshape(1, -1)[0]]\n", |
| 224 | + " self.model['kernelFunction'] = self.kernel\n", |
| 225 | + " self.model['b'] = b\n", |
| 226 | + " self.model['alphas'] = alphas[idx.reshape(1, -1)[0]]\n", |
| 227 | + " self.model['w'] = np.transpose(np.matmul(np.transpose(alphas * Y), X))\n", |
| 228 | + " # return model\n", |
| 229 | + " \n", |
| 230 | + " def svmPredict(self, X):\n", |
| 231 | + " if X.shape[1] == 1:\n", |
| 232 | + " X = np.transpose(X)\n", |
| 233 | + "\n", |
| 234 | + " # Dataset\n", |
| 235 | + " m = X.shape[0]\n", |
| 236 | + " p = np.zeros((m, 1))\n", |
| 237 | + " pred = np.zeros((m, 1))\n", |
| 238 | + " \n", |
| 239 | + " if self.model['kernelFunction'] == linear_kernel:\n", |
| 240 | + " p = X.dot(self.model['w']) + self.model['b']\n", |
| 241 | + " \n", |
| 242 | + " elif self.model['kernelFunction'] == gaussian_kernel:\n", |
| 243 | + " # Vectorized RBF Kernel\n", |
| 244 | + " # This is equivalent to computing the kernel on every pair of examples\n", |
| 245 | + " X1 = np.sum(np.power(X, 2), axis=1).reshape(-1, 1)\n", |
| 246 | + " X2 = np.transpose(np.sum(np.power(self.model['X'], 2), axis=1))\n", |
| 247 | + " K = X1 + (X2.T - (2 * (X @ (self.model['X']).T)))\n", |
| 248 | + " K = np.power(self.model['kernelFunction'](1, 0), K)\n", |
| 249 | + " K = np.transpose(self.model['y']) * K\n", |
| 250 | + " K = np.transpose(self.model['alphas']) * K\n", |
| 251 | + " p = np.sum(K, axis=1)\n", |
| 252 | + " \n", |
| 253 | + " else:\n", |
| 254 | + " for i in range(m):\n", |
| 255 | + " prediction = 0\n", |
| 256 | + " for j in range(self.model['X'].shape[0]):\n", |
| 257 | + " prediction = prediction + self.model['alphas'][j] * self.model['y'][j] * self.model['kernelFunction'](np.transpose(X[i,:]), np.transpose(self.model['X'][j,:]))\n", |
| 258 | + " \n", |
| 259 | + " p[i] = prediction + self.model['b']\n", |
| 260 | + "\n", |
| 261 | + " # Convert predictions into 0 and 1 \n", |
| 262 | + " pred[p >= 0] = 1\n", |
| 263 | + " pred[p < 0] = 0\n", |
| 264 | + " return pred" |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "markdown", |
| 269 | + "metadata": {}, |
| 270 | + "source": [ |
| 271 | + "# TESTING MY SVM" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "metadata": {}, |
| 278 | + "outputs": [], |
| 279 | + "source": [ |
| 280 | + "train = spio.loadmat('spamTrain.mat')\n", |
| 281 | + "test = spio.loadmat('spamTest.mat')" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "code", |
| 286 | + "execution_count": null, |
| 287 | + "metadata": {}, |
| 288 | + "outputs": [], |
| 289 | + "source": [ |
| 290 | + "X_train = np.double(train.get('X'))\n", |
| 291 | + "y_train = np.double(train.get('y'))\n", |
| 292 | + "X_test = np.double(test.get('Xtest'))\n", |
| 293 | + "y_test = np.double(test.get('ytest'))" |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "code", |
| 298 | + "execution_count": null, |
| 299 | + "metadata": {}, |
| 300 | + "outputs": [], |
| 301 | + "source": [ |
| 302 | + "model = SVM()" |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "code", |
| 307 | + "execution_count": null, |
| 308 | + "metadata": {}, |
| 309 | + "outputs": [], |
| 310 | + "source": [ |
| 311 | + "model.svmTrain(X_train, y_train)" |
| 312 | + ] |
| 313 | + }, |
| 314 | + { |
| 315 | + "cell_type": "code", |
| 316 | + "execution_count": null, |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [], |
| 319 | + "source": [ |
| 320 | + "y_predicted = model.svmPredict(X_train)" |
| 321 | + ] |
| 322 | + }, |
| 323 | + { |
| 324 | + "cell_type": "code", |
| 325 | + "execution_count": null, |
| 326 | + "metadata": {}, |
| 327 | + "outputs": [], |
| 328 | + "source": [ |
| 329 | + "confusionMatrix(y_train, y_predicted)" |
| 330 | + ] |
| 331 | + }, |
| 332 | + { |
| 333 | + "cell_type": "code", |
| 334 | + "execution_count": null, |
| 335 | + "metadata": {}, |
| 336 | + "outputs": [], |
| 337 | + "source": [] |
| 338 | + } |
| 339 | + ], |
| 340 | + "metadata": { |
| 341 | + "kernelspec": { |
| 342 | + "display_name": "Python 3", |
| 343 | + "language": "python", |
| 344 | + "name": "python3" |
| 345 | + }, |
| 346 | + "language_info": { |
| 347 | + "codemirror_mode": { |
| 348 | + "name": "ipython", |
| 349 | + "version": 3 |
| 350 | + }, |
| 351 | + "file_extension": ".py", |
| 352 | + "mimetype": "text/x-python", |
| 353 | + "name": "python", |
| 354 | + "nbconvert_exporter": "python", |
| 355 | + "pygments_lexer": "ipython3", |
| 356 | + "version": "3.6.6" |
| 357 | + } |
| 358 | + }, |
| 359 | + "nbformat": 4, |
| 360 | + "nbformat_minor": 2 |
| 361 | +} |
0 commit comments