-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_frag_diffuser.py
229 lines (211 loc) · 11.9 KB
/
train_frag_diffuser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import os
import sys
from src.const import GEOM_NUMBER_OF_ATOM_TYPES, CROSSDOCK_NUMBER_OF_ATOMS
from src.lightning import AR_DDPM
from src.utils import disable_rdkit_logging, Logger
from pytorch_lightning import Trainer, callbacks, loggers
from pytorch_lightning.loggers import TensorBoardLogger
from src import const
def find_last_checkpoint(checkpoints_dir):
epoch2fname = [
(int(fname.split('=')[1].split('.')[0]), fname)
for fname in os.listdir(checkpoints_dir)
if fname.endswith('.ckpt')
]
latest_fname = max(epoch2fname, key=lambda t: t[0])[1]
return os.path.join(checkpoints_dir, latest_fname)
def main(args):
run_name = args.exp_name
experiment = run_name if args.resume is None else args.resume
checkpoints_dir = os.path.join(args.checkpoints, experiment)
os.makedirs(os.path.join(args.logs, 'general_logs', experiment), exist_ok=True)
sys.stdout = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stdout)
sys.stderr = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stderr)
os.makedirs(checkpoints_dir, exist_ok=True)
os.makedirs(args.logs, exist_ok=True)
samples_dir = os.path.join(args.logs, 'samples', experiment)
if args.dataset_type == 'GEOM':
number_of_atoms = GEOM_NUMBER_OF_ATOM_TYPES
elif args.dataset_type == 'CrossDock':
number_of_atoms = CROSSDOCK_NUMBER_OF_ATOMS
else:
raise ValueError
in_node_nf = number_of_atoms + args.include_charges
anchors_context = not args.remove_anchors_context
# ---------------------------------------------------------
lig_nf = 10 # atom types (10)
pocket_nf = 25 # node features (4) + AA type (20) + BB (1)
context_node_nf = 3 # context is (anchors + scaffold_masks + pocket_masks )
TB_Logger = TensorBoardLogger('tb_logs', name=experiment)
wandb_logger = loggers.WandbLogger(
save_dir=args.logs,
project='autofragdiff',
name=experiment,
id=experiment,
resume='must' if args.resume is not None else 'allow',
)
torch_device = args.device
joint_nf = 32 #
edge_cutoff_ligand = None
edge_cutoff_pocket = 4.5
edge_cutoff_interaction = 4.5
ddpm = AR_DDPM(
data_path=args.data,
train_data_prefix=args.train_data_prefix,
val_data_prefix=args.val_data_prefix,
lig_nf=lig_nf,
pocket_nf=pocket_nf,
joint_nf=joint_nf,
n_dims=3,
context_node_nf=context_node_nf,
hidden_nf=args.nf,
activation=args.activation,
n_layers=args.n_layers,
attention=args.attention,
tanh=args.tanh,
normalization_factor=args.normalization_factor,
diffusion_steps=args.diffusion_steps,
diffusion_noise_schedule=args.diffusion_noise_schedule,
diffusion_noise_precision=args.diffusion_noise_precision,
diffusion_loss_type=args.diffusion_loss_type,
normalize_factors=args.normalize_factors,
include_charges=args.include_charges,
lr=args.lr,
batch_size=args.batch_size,
test_epochs=args.test_epochs,
n_stability_samples=args.n_stability_samples,
normalization=None,
log_iterations=args.log_iterations,
samples_dir=samples_dir,
data_augmentation=args.data_augmentation,
center_of_mass=args.center_of_mass,
inpainting=args.inpainting,
anchors_context=anchors_context,
train_dataframe_path=args.train_dataframe_path,
val_dataframe_path=args.valid_dataframe_path,
num_workers=args.num_workers,
dataset_type=args.dataset_type,
gaussian_expansion=args.gaussian_expansion,
num_gaussians=args.num_gaussians,
edge_cutoff_ligand=edge_cutoff_ligand,
edge_cutoff_pocket=edge_cutoff_pocket,
edge_cutoff_interaction=edge_cutoff_interaction,
clip_grad=False,
)
checkpoint_callback = callbacks.ModelCheckpoint(
dirpath=checkpoints_dir,
filename=experiment + '_{epoch:02d}',
monitor='loss/val',
save_top_k=20
)
trainer = Trainer(
max_epochs=args.n_epochs,
logger=wandb_logger,
callbacks=checkpoint_callback,
accelerator='gpu',
devices=[1,3],
num_sanity_val_steps=0,
enable_progress_bar=True,
strategy='ddp',
gradient_clip_val=1,
gradient_clip_algorithm='norm',
)
if args.resume is None:
last_checkpoint = None
else:
last_checkpoint = find_last_checkpoint(checkpoints_dir)
print(f'Training will be resumed from the last checkpoint {last_checkpoint}')
print('Start training')
trainer.fit(model=ddpm, ckpt_path=last_checkpoint)
if __name__ == '__main__':
p = argparse.ArgumentParser(description='moldiffuser')
#p.add_argument('--config', type=argparse.FileType(mode='r'), default=None)
p.add_argument('--data', action='store', type=str, default="")
p.add_argument('--train-dataframe-path', action='store', type=str, default='paths_train.csv')
p.add_argument('--valid-dataframe-path', action='store', type=str, default='paths_val.csv')
p.add_argument('--train_data_prefix', action='store', type=str, default='train_data')
p.add_argument('--val_data_prefix', action='store', type=str, default='val_data')
p.add_argument('--checkpoints', action='store', type=str, default='checkpoints')
p.add_argument('--logs', action='store', type=str, default='logs')
p.add_argument('--device', action='store', type=str, default='cuda:1')
p.add_argument('--trainer_params', type=dict, help='parameters with keywords of the lightning trainer')
p.add_argument('--log_iterations', action='store', type=str, default=20)
p.add_argument('--exp_name', type=str, default='test_1')
p.add_argument('--model', type=str, default='egnn_dynamics',help='our_dynamics | schnet | simple_dynamics | kernel_dynamics | egnn_dynamics |gnn_dynamics')
p.add_argument('--probabilistic_model', type=str, default='diffusion', help='diffusion')
# Training complexity is O(1) (unaffected), but sampling complexity is O(steps).
p.add_argument('--diffusion_steps', type=int, default=500)
p.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2', help='learned, cosine')
p.add_argument('--diffusion_noise_precision', type=float, default=1e-5, )
p.add_argument('--diffusion_loss_type', type=str, default='l2', help='vlb, l2')
p.add_argument('--n_epochs', type=int, default=1000)
p.add_argument('--batch_size', type=int, default=24)
p.add_argument('--lr', type=float, default=2e-4)
p.add_argument('--brute_force', type=eval, default=False, help='True | False')
p.add_argument('--actnorm', type=eval, default=True,help='True | False')
p.add_argument('--break_train_epoch', type=eval, default=False,help='True | False')
p.add_argument('--dp', type=eval, default=True,help='True | False')
p.add_argument('--condition_time', type=eval, default=True,help='True | False')
p.add_argument('--clip_grad', type=eval, default=True, help='True | False')
p.add_argument('--trace', type=str, default='hutch',help='hutch | exact')
# EGNN args -->
p.add_argument('--activation', type=str, default='silu', help='activation function')
p.add_argument('--n_layers', type=int, default=6, help='number of layers')
p.add_argument('--inv_sublayers', type=int, default=1, help='number of layers')
p.add_argument('--nf', type=int, default=128, help='number of layers')
p.add_argument('--tanh', type=eval, default=True, help='use tanh in the coord_mlp')
p.add_argument('--attention', type=eval, default=False, help='use attention in the EGNN')
p.add_argument('--norm_constant', type=float, default=1., help='diff/(|diff| + norm_constant)')
p.add_argument('--sin_embedding', type=eval, default=False, help='whether using or not the sin embedding')
p.add_argument('--gaussian-expansion', action='store_true', default=False, help='whether to add gaussian expansion of distances')
p.add_argument('--num-gaussians', type=int, default=16, help='number of gaussians for distances')
p.add_argument('--ode_regularization', type=float, default=1e-3)
p.add_argument('--dataset', type=str, default='qm9', help='qm9 | qm9_second_half (train only on the last 50K samples of the training dataset)')
p.add_argument('--datadir', type=str, default='qm9/temp', help='qm9 directory')
p.add_argument('--filter_n_atoms', type=int, default=None, help='When set to an integer value, QM9 will only contain molecules of that amount of atoms')
p.add_argument('--dequantization', type=str, default='argmax_variational', help='uniform | variational | argmax_variational | deterministic')
p.add_argument('--n_report_steps', type=int, default=1)
p.add_argument('--wandb_usr', type=str)
p.add_argument('--no_wandb', action='store_true', help='Disable wandb')
p.add_argument('--enable_progress_bar', action='store_true', help='Disable wandb')
p.add_argument('--online', type=bool, default=True, help='True = wandb online -- False = wandb offline')
p.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
p.add_argument('--save_model', type=eval, default=True, help='save model')
p.add_argument('--generate_epochs', type=int, default=1,help='save model')
p.add_argument('--num_workers', type=int, default=0, help='Number of worker for the dataloader')
p.add_argument('--test_epochs', type=int, default=1000)
p.add_argument('--data_augmentation', type=eval, default=False, help='use attention in the EGNN')
p.add_argument("--conditioning", nargs='+', default=[], help='arguments : homo | lumo | alpha | gap | mu | Cv')
p.add_argument('--resume', type=str, default=None, help='')
p.add_argument('--start_epoch', type=int, default=0, help='')
p.add_argument('--ema_decay', type=float, default=0.999, help='Amount of EMA decay, 0 means off. A reasonable value is 0.999.')
p.add_argument('--augment_noise', type=float, default=0)
p.add_argument('--n_stability_samples', type=int, default=500,help='Number of samples to compute the stability')
p.add_argument('--normalize_factors', type=eval, default=[1, 4, 1], help='normalize factors for [x, categorical, integer]')
p.add_argument('--remove_h', action='store_true')
p.add_argument('--include_charges', type=eval, default=False,help='include atom charge or not') # TODO: change this
p.add_argument('--visualize_every_batch', type=int, default=1e8,help="Can be used to visualize multiple times per epoch")
p.add_argument('--normalization_factor', type=float, default=100,help="Normalize the sum aggregation of EGNN")
p.add_argument('--aggregation_method', type=str, default='sum',help='"sum" or "mean"')
p.add_argument('--normalization', type=str, default='batch_norm', help='batch_norm')
p.add_argument('--wandb_entity', type=str, default='geometric', help='Entity (project) name')
p.add_argument('--center_of_mass', type=str, default='anchors', help='Where to center the data: fragments | anchors')
p.add_argument('--inpainting', action='store_true', default=False, help='Inpainting mode (full generation)')
p.add_argument('--remove_anchors_context', action='store_true', default=False, help='Remove anchors context')
p.add_argument('--dataset-type', type=str, default='CrossDock', help='dataset type: GEOM, CrossDock')
disable_rdkit_logging()
args = p.parse_args()
#if args.config:
# config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
# arg_dict = args.__dict__
# for key, value in config_dict.items():
# if isinstance(value, list) and key != 'normalize_factors':
# for v in value:
# arg_dict[key].append(v)
# else:
# arg_dict[key] = value
# args.config = args.config.name
#else:
# config_dict = {}
main(args=args)