-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov5_s-v61_fast_1xb12-40e_608x352_cat.py
70 lines (63 loc) · 2.24 KB
/
yolov5_s-v61_fast_1xb12-40e_608x352_cat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
_base_ = 'yolov5_s-v61_fast_1xb12-40e_cat.py'
# This configuration is used to provide non-square training examples
# Must be a multiple of 32
img_scale = (608, 352) # w h
anchors = [
[(65, 35), (159, 45), (119, 80)], # P3/8
[(215, 77), (224, 116), (170, 166)], # P4/16
[(376, 108), (339, 176), (483, 190)] # P5/32
]
# ===============================Unmodified in most cases====================
_base_.model.bbox_head.loss_obj.loss_weight = 1.0 * ((img_scale[1] / 640)**2)
_base_.model.bbox_head.prior_generator.base_sizes = anchors
train_pipeline = [
*_base_.pre_transform,
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=_base_.pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
dict(
type='mmdet.Albu',
transforms=_base_.albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
_base_.train_dataloader.dataset.pipeline = train_pipeline
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='mmdet.LoadAnnotations', with_bbox=True),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, batch_shapes_cfg=None))
test_dataloader = val_dataloader