forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch_PP-OCRv2_rec_distillation.yml
160 lines (152 loc) · 3.3 KB
/
ch_PP-OCRv2_rec_distillation.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Global:
debug: false
use_gpu: true
epoch_num: 800
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_pp-OCRv2_distillation
save_epoch_step: 3
eval_batch_step: [0, 2000]
cal_metric_during_train: true
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: false
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
max_text_length: 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_pp-OCRv2_distillation.txt
amp_custom_black_list: ['matmul','matmul_v2','elementwise_add']
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs : [700]
values : [0.001, 0.0001]
warmup_epoch: 5
regularizer:
name: L2
factor: 2.0e-05
Architecture:
model_type: &model_type "rec"
name: DistillationModel
algorithm: Distillation
Models:
Teacher:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV1Enhance
scale: 0.5
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00002
Student:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV1Enhance
scale: 0.5
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00002
Loss:
name: CombinedLoss
loss_config_list:
- DistillationCTCLoss:
weight: 1.0
model_name_list: ["Student", "Teacher"]
key: head_out
- DistillationDMLLoss:
weight: 1.0
act: "softmax"
use_log: true
model_name_pairs:
- ["Student", "Teacher"]
key: head_out
- DistillationDistanceLoss:
weight: 1.0
mode: "l2"
model_name_pairs:
- ["Student", "Teacher"]
key: backbone_out
PostProcess:
name: DistillationCTCLabelDecode
model_name: ["Student", "Teacher"]
key: head_out
Metric:
name: DistillationMetric
base_metric_name: RecMetric
main_indicator: acc
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/train_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecAug:
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
loader:
shuffle: true
batch_size_per_card: 128
drop_last: true
num_sections: 1
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/val_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
loader:
shuffle: false
drop_last: false
batch_size_per_card: 128
num_workers: 8