-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsentiment.R
257 lines (207 loc) · 9.23 KB
/
sentiment.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
library(quanteda)
library(readtext)
library(tidyverse)
library(udpipe)
#################################
### Read in corpus and stops ####
################################
load("RData/custom_stopwords.RData")
load("RData/lemmatized_corpus.RData")
# Convert characters in year column to integers
docvars(programs, field="year") <- as.integer(docvars(programs, field="year"))
# Create tokens object for whole corpus, filter out stopwords.
program_toks <- tokens(programs,remove_punct = TRUE) %>% tokens_remove(custom_stops)
# Create dfm for corpus
program_dfm <- dfm(program_toks)
#################################
### Read in Sentiment words #####
################################
neg <- scan("data/SentiWS_v1.8c_Negative.txt", what = "char", sep = "\n", fileEncoding="utf-8")
pos <- scan("data/SentiWS_v1.8c_Positive.txt", what = "char", sep = "\n", fileEncoding="utf-8")
s <- str_split(neg, "\t")
t <- str_split(pos, "\t")
terms.neg <- sub("([A-Za-zß]+)[|][A-Za-z]+", "\\1",lapply(s, function(l) l[[1]]))
terms.pos <- sub("([A-Za-zß]+)[|][A-Za-z]+", "\\1",lapply(t, function(l) l[[1]]))
value.neg <- unlist(lapply(s, function(l) as.double(l[[2]])))
value.pos <- unlist(lapply(t, function(l) as.double(l[[2]])))
positive <- data.frame(term=terms.pos, value=value.pos)
negative <- data.frame(term=terms.neg, value=value.neg)
# Or:
# load(file = "RData/senti_dict.RData")
# senti_dict
#################################
### Sentiment over years #######
################################
years <- dfm(program_dfm, groups = "year") %>%
textstat_frequency(groups = "year") %>%
as.data.frame()
tmp.pos <- filter(years, feature %in% positive$term)
tmp.neg <- filter(years, feature %in% negative$term)
lvl.year <- levels(factor(years$group))
sent.years <- data.frame(matrix(ncol = 3, nrow=0))
colnames(sent.years) <- c("year", "rel_freq", "sent")
# Collect sentiment for positive terms
for (i in 1:length(lvl.year)){
curr.year <- filter(tmp.pos, group == lvl.year[i])
sum.all <- sum(filter(years, group == lvl.year[i])$frequency)
sum.freq <- sum(curr.year$frequency)
curr.row <- data.frame(year = lvl.year[i], rel_freq=sum.freq/sum.all, sent = "positive")
sent.years <- rbind(sent.years, curr.row)
}
# Collect sentiment for negative terms
for (i in 1:length(lvl.year)){
curr.year <- filter(tmp.neg, group == lvl.year[i])
sum.all <- sum(filter(years, group == lvl.year[i])$frequency)
sum.freq <- sum(curr.year$frequency)
curr.row <- data.frame(year = lvl.year[i], rel_freq=sum.freq/sum.all, sent = "negative")
sent.years <- rbind(sent.years, curr.row)
}
# Plot sentiment over years.
ggplot(sent.years, aes(fill = sent, x=year, y=rel_freq)) +
geom_bar(position = "dodge", stat="identity")+
labs(y = "Relative Häufigkeit", x = "Jahre",
fill="Sentiment",
title = "Relative Häufigkeit von Sentimenttermen")+
scale_fill_manual(values = c("darkred", "darkgreen"))+
theme_minimal()
#################################
### Sentiment for parties #######
#################################
parties <- dfm(program_dfm) %>%
textstat_frequency(groups = "party") %>%
as.data.frame()
tmp.pos <- filter(parties, feature %in% positive$term)
tmp.neg <- filter(parties, feature %in% negative$term)
party.vec <- levels(factor(parties$group))
# Intialize data frame
sent.party <- data.frame(matrix(ncol=3, nrow=0))
colnames(sent.party) <- c("party", "frequency", "sent")
# Collect negative and positive terms
for (i in 1:length(party.vec)){
curr.party <- party.vec[i]
sum.all <- sum(filter(parties, group == curr.party)$frequency)
curr.pos <- sum(filter(tmp.pos, group == curr.party)$frequency)
curr.neg <- sum(filter(tmp.neg, group == curr.party)$frequency)
row.pos <- data.frame(party = curr.party, sent="positiv", frequency=curr.pos/sum.all)
row.neg <- data.frame(party = curr.party, sent="negativ", frequency=curr.neg/sum.all)
sent.party <- rbind(sent.party, row.pos, row.neg)
}
# Plot sentiment for parties.
ggplot(sent.party, aes(fill = sent, x=party, y=frequency)) +
geom_bar(position = "dodge", stat="identity")+
labs(y = "Relative Häufigkeit",
x = "Jahre",
fill="Sentiment",
title = "Relative Häufigkeit von Sentimenttermen nach Parteien")+
scale_fill_manual(values = c("darkred", "darkgreen"))+
theme_minimal()
######################################
#Sentiment for parties and years #####
######################################
part.year <- dfm(program_dfm) %>%
textstat_frequency(groups = c("party", "year")) %>%
as.data.frame()
# Add columns for party and year.
part.year$party <- unlist(lapply(strsplit(part.year$group, "[.]"), function(l) l[[1]]))
part.year$year <- unlist(lapply(strsplit(part.year$group, "[.]"), function(l) l[[2]]))
# Initialze data frame for positive terms.
pos.year.party <- data.frame(matrix(ncol=3, nrow=0))
colnames(pos.year.party ) <- c("year", "party", "rel")
lvl <- levels(factor(part.year$group))
for (i in 1:length(lvl)){
curr.lvl <- lvl[i]
sum.lvl <- sum(filter(part.year, group == curr.lvl)$frequency)
pos.lvl <- filter(part.year, feature %in% positive$term & group== curr.lvl)
tmp.row <- data.frame(year = levels(factor(pos.lvl$year)),
party = levels(factor(pos.lvl$party)),
rel=sum(pos.lvl$frequency)/sum.lvl)
pos.year.party <- rbind(pos.year.party , tmp.row)
}
# Plot positive terms for parties over years.
ggplot(pos.year.party, aes(fill = party, x=year, y=rel)) +
geom_bar(position = "dodge", stat="identity")+
labs(y = "Relative Häufigkeit",
x = "Jahre",
fill="Partei",
title = "Relative Häufigkeit von Termen mit positivem Sentiment")+
theme_minimal()+
scale_fill_manual(values = c("blue", "#009933", "black", "#CC0066", "#FFFF00", "brown", "red"))
# Initialze data frame for negative terms.
neg.year.party <- data.frame(matrix(ncol=3, nrow=0))
colnames(neg.year.party) <- c("year", "party", "rel")
lvl <- levels(factor(part.year$group))
for (i in 1:length(lvl)){
curr.lvl <- lvl[i]
sum.lvl <- sum(filter(part.year, group == curr.lvl)$frequency)
neg.lvl <- filter(part.year, feature %in% negative$term&group== curr.lvl)
tmp.row <- data.frame(year = levels(factor(neg.lvl$year)),
party = levels(factor(neg.lvl$party)),
rel=sum(neg.lvl$frequency)/sum.lvl)
neg.year.party <- rbind(neg.year.party, tmp.row)
}
# Plot negative sentiment over years for parties.
ggplot(neg.year.party, aes(fill = party, x=year, y=rel)) +
geom_bar(position = "dodge", stat="identity")+
labs(y = "Relative Häufigkeit",
x = "Jahre",
fill="Partei",
title = "Relative Häufigkeit von Termen mit negativem Sentiment")+
theme_minimal()+
scale_fill_manual(values = c("blue", "#009933", "black", "#CC0066", "#FFFF00", "brown", "red"))
######################################
# Sentiment Values ##################
######################################
part.sent <- textstat_frequency(program_dfm, groups = "party") %>% as.data.frame()
tmp.pos <- filter(part.sent, feature %in% positive$term)
tmp.neg <- filter(part.sent, feature %in% negative$term)
# Intialize data frame for positiv terms
freq.pos <- as.data.frame(matrix(ncol = 4, nrow = 0))
colnames(freq.pos) <- c("term", "sentiment", "frequency", "party")
# Collect sentiment values for positive terms.
for (i in 1:nrow(tmp.pos)){
curr.term <- tmp.pos$feature[i]
curr.value <- filter(positive, term == curr.term)$value
curr.freq <- tmp.pos$frequency[i]
curr.row <- data.frame(term = curr.term,
sentiment = curr.value,
frequency = curr.freq,
party = tmp.pos$group[i])
freq.pos <- rbind(freq.pos, curr.row)
}
# Intialize data frame for negative terms
freq.neg <- as.data.frame(matrix(ncol = 4, nrow = 0))
colnames(freq.neg) <- c("term", "sentiment", "frequency", "year")
# Collect sentiment values for negative terms.
for (i in 1:nrow(tmp.neg)){
curr.term <- tmp.neg$feature[i]
curr.value <- filter(negative, term == curr.term)$value
curr.freq <- tmp.neg$frequency[i]
curr.row <- data.frame(term = curr.term,
sentiment = curr.value,
frequency = curr.freq,
party = tmp.neg$group[i])
freq.neg<- rbind(freq.neg, curr.row)
}
part.lvl <- levels(factor(freq.neg$party))
sent.values <- data.frame(matrix(ncol=3, nrow=0))
colnames(sent.values) <- c("party", "pos", "neg")
# Compute sum for positive and negative terms
for (i in 1:length(part.lvl)){
tmp.party <- part.lvl[i]
curr.pos <- filter(freq.pos, party == tmp.party)
curr.neg <- filter(freq.neg, party == tmp.party)
sum.all <- sum(filter(textstat_frequency(program_dfm, group = "party"),
group == tmp.party)$frequency)
p <- sum(curr.pos$sentiment * curr.pos$frequency/sum.all)
n <- sum(curr.neg$sentiment * curr.neg$frequency/sum.all)
tmp <- data.frame(party=tmp.party, pos=p, neg=n)
sent.values <- rbind(sent.values, tmp)
}
# Plot sentiment scores for parties.
ggplot(sent.values) +
geom_segment( aes(x=party, xend=party, y=pos, yend=neg), color="black") +
geom_point( aes(x=party, y=pos), color="darkgreen", size=5 ) +
geom_point( aes(x=party, y=neg), color="darkred", size=5 )+
geom_hline(yintercept = 0)+
theme_minimal()+
labs(x = "Partei", y="Score", title="Positive und Negative Sentimentscores")