diff --git a/measure_extinction/utils/fit_model.py b/measure_extinction/utils/fit_model.py index f5d6eea..c483e83 100755 --- a/measure_extinction/utils/fit_model.py +++ b/measure_extinction/utils/fit_model.py @@ -74,7 +74,7 @@ def lnlike(self, params, obsdata, modeldata, fit_range="all"): ---------- params : floats parameters of the model - params = [logT, logg, logZ, Av, Rv, C2, C3, C4, x0, gamma, HI_gal, HI_mw] + params = [logT, logg, logZ, Av, Rv, C2, C3, C4, x0, gamma, HI_gal, HI_mw, logf] obsdata : StarData object observed data for a reddened star @@ -83,6 +83,8 @@ def lnlike(self, params, obsdata, modeldata, fit_range="all"): all the information about the model spectra """ # intrinsic sed + + #print("Params: ",params) modsed = modeldata.stellar_sed(params[0:3], velocity=self.velocities[0]) # dust_extinguished sed @@ -100,21 +102,28 @@ def lnlike(self, params, obsdata, modeldata, fit_range="all"): for cspec in hi_ext_modsed.keys(): try: gvals = (self.weights[cspec] > 0) & (np.isfinite(hi_ext_modsed[cspec])) + except ValueError: raise ValueError( "Oops! The model data and reddened star data did not match.\n Hint: Make sure that the BAND name in the .dat files match." ) + + errors = 1./self.weights[cspec][gvals] + newerrors = errors**2 + (hi_ext_modsed[cspec][gvals] * (norm_data / norm_model))**2 * np.exp(2 * params[-1]) + chiarr = np.square( ( ( obsdata.data[cspec].fluxes[gvals].value - (hi_ext_modsed[cspec][gvals] * (norm_data / norm_model)) ) - * self.weights[cspec][gvals] - ) - ) + + ) + ) / newerrors + np.log(newerrors) + lnl += -0.5 * np.sum(chiarr) + #print("LogLikelihood: ",lnl) return lnl def lnprior(self, params): @@ -335,8 +344,9 @@ def get_percentile_params(samples): "gamma", "HI_gal", "HI_mw", + "logf", ] - params = [4.3, 2.09, 0.2, 0.75, 3.7, 2.5, 0.65, 0.26, 4.66, 0.86, 22.0, 19.0] + params = [4.3, 2.09, 0.2, 0.75, 3.7, 2.5, 0.65, 0.26, 4.66, 0.86, 22.0, 19.0,-1.0] plimits = [ [modinfo.temps_min, modinfo.temps_max], [modinfo.gravs_min, modinfo.gravs_max], @@ -350,6 +360,7 @@ def get_percentile_params(samples): [0.6, 1.5], [17.0, 24.0], [17.0, 22.0], + [-9.0,0.0], ] ppriors = {} if args.spteff: @@ -366,7 +377,7 @@ def get_percentile_params(samples): # bad regions are defined as those were we know the models do not work # or the data is bad ex_regions = [ - [8.23 - 0.1, 8.23 + 0.1], # geocoronal line + [8.13, 8.33], # geocoronal line [8.7, 10.0], # bad data from STIS [3.55, 3.6], [3.80, 3.90],