-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsweep_debiasing.py
73 lines (59 loc) · 2.3 KB
/
sweep_debiasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import torch
import wandb
from conf.probe.probe_configs import probe_configs
from fair.utils import get_mod_weights_module
from train_adversarial import train_adversarial
from train_mmd import train_mmd
from train_probe import train_probe
def train_val_agent():
# Initialization and gathering hyperparameters
run = wandb.init(job_type='train/val')
run_id = run.id
sweep_id = run.sweep_id
debias_conf = {k: v for k, v in wandb.config.items() if k[0] != '_'}
save_path = './saved_models/{}/{}/'.format(sweep_id, run_id)
debias_conf['save_path'] = save_path
print("------ Debiasing -----")
if debias_conf['debiasing_method'] == 'adv':
print("Using Adversarial Debiasing")
n_delta_sets, user_to_delta_set = train_adversarial(debias_conf)
elif debias_conf['debiasing_method'] == 'mmd':
print("Using MMD Debiasing")
n_delta_sets, user_to_delta_set = train_mmd(debias_conf)
else:
raise ValueError(f"Unknown debiasing method: {debias_conf['debiasing_method']}")
print("----- Debiasing is over -----")
print("----- Starting Final Attack -----")
# Probe is tested on the same seed of the debiasing method
# Refer to the ./conf/probe/probe_configs.py file for the configuration
probe_config = probe_configs[debias_conf['dataset']][debias_conf['group_type']]
# Additional options
probe_config = {
**probe_config,
# --- Others --- #
'device': 'cuda',
'seed': debias_conf['seed'],
'verbose': True,
'running_settings': {'eval_n_workers': 2, 'train_n_workers': 6},
}
# Modular Weights
mod_weights = get_mod_weights_module(
how_use_deltas=debias_conf['how_use_deltas'],
latent_dim=debias_conf['latent_dim'],
n_delta_sets=n_delta_sets,
user_to_delta_set=user_to_delta_set,
use_clamping=debias_conf['use_clamping']
)
mod_weights_state_dict = torch.load(
os.path.join(debias_conf['save_path'], 'last.pth'), map_location=probe_config['device']
)['mod_weights']
mod_weights.load_state_dict(mod_weights_state_dict)
mod_weights.requires_grad_(False)
train_probe(
probe_config=probe_config,
eval_type='test',
wandb_log_prefix=f'final_',
mod_weights=mod_weights
)
train_val_agent()